47 resultados para Somatic Mutations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protoplast fusion between sweet orange and mandarin/mandarin hybrids scion cultivars was performed following the model "diploid embryogenic callus protoplast + diploid mesophyll-derived protoplast". Protoplasts were isolated from embryogenic calli of 'Pera' and 'Westin' sweet orange cultivars (Citrus sinensis) and from young leaves of 'Fremont', Nules', and 'Thomas' mandarins (C. reticulata), and 'Nova' tangelo [C. reticulata x (C. paradisi x C. reticulata)]. The regenerated plants were characterized based on their leaf morphology (thickness), ploidy level, and simple sequence repeat (SSR) molecular markers. Plants were successfully generated only when 'Pera' sweet orange was used as the embryogenic parent. Fifteen plants were regenerated being 7 tetraploid and 8 diploid. Based on SSR molecular markers analyses all 7 tetraploid regenerated plants revealed to be allotetraploids (somatic hybrids), including 2 from the combination of 'Pera' sweet orange + 'Fremont' mandarin, 3 'Pera' sweet orange + 'Nules' mandarin, and 2 'Pera' sweet orange + 'Nova' tangelo, and all the diploid regenerated plants showed the 'Pera' sweet orange marker profile. Somatic hybrids were inoculated with Alternaria alternata and no disease symptoms were detected 96 h post-inoculation. This hybrid material has the potential to be used as a tetraploid parent in interploid crosses for citrus scion breeding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To precisely classify the various forms of TD, and then to screen for mutations in transcription factor genes active in thyroid development. Subjects and methods: Patients underwent ultrasound, thyroid scan, and serum thyroglobulin measurement to accurately diagnose the form of TD. DNA was extracted from peripheral leukocytes. The PAX8, and NKX2.5 genes were evaluated in all patients, and TSH receptor ( TSHR) gene in those with hypoplasia. Results: In 27 nonconsanguineous patients with TD, 13 were diagnosed with ectopia, 11 with hypoplasia, and 3 with athyreosis. No mutations were detected in any of the genes studied. Conclusion: Sporadic cases of TD are likely to be caused by epigenetic factors, rather than mutations in thyroid transcription factors or genes involved in thyroid development. Arq Bras Endocrinol Metab. 2012;56(3):173-7

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, it was observed a straight relationship between the manipulation of the reduced glutathione (GSH)/glutathione disulfide (GSSG) ratio, nitric oxide emission and quality and number of early somatic embryos in Araucaria angustifolia, a Brazilian endangered native conifer. In low concentrations GSH (0.01 and 0.1 mM) is a potential NO scavenger in the culture medium. Furthermore, it can increase the number of early SE formed in cell suspension culture media in a few days. However, the maintenance in this low redox state lead to a loss of early somatic embryos polarization. In gelled culture medium, high levels of GSH (5 mM) allows the development of globular embryos presenting a high NO emission on embryo apex, stressing its importance in the differentiation and cell division. Taken together these results indicate that the modification of the embryogenic cultures redox state might be an effective strategy to develop more efficient embryogenic systems in A. angustifolia. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the critical chromatin modifier ATRX and mutations in CIC and FUBP1, which are potent regulators of cell growth, have been discovered in specific subtypes of gliomas, the most common type of primary malignant brain tumors. However, the frequency of these mutations in many subtypes of gliomas, and their association with clinical features of the patients, is poorly understood. Here we analyzed these loci in 363 brain tumors. ATRX is frequently mutated in grade II-III astrocytomas (71%), oligoastrocytomas (68%), and secondary glioblastomas (57%), and ATRX mutations are associated with IDH1 mutations and with an alternative lengthening of telomeres phenotype. CIC and FUBP1 mutations occurred frequently in oligodendrogliomas (46% and 24%, respectively) but rarely in astrocytomas or oligoastrocytomas (<10%). This analysis allowed us to define two highly recurrent genetic signatures in gliomas: IDH1/ATRX (I-A) and IDH1/CIC/FUBP1 (I-CF). Patients with I-CF gliomas had a significantly longer median overall survival (96 months) than patients with I-A gliomas (51 months) and patients with gliomas that did not harbor either signature (13 months). The genetic signatures distinguished clinically distinct groups of oligoastrocytoma patients, which usually present a diagnostic challenge, and were associated with differences in clinical outcome even among individual tumor types. In addition to providing new clues about the genetic alterations underlying gliomas, the results have immediate clinical implications, providing a tripartite genetic signature that can serve as a useful adjunct to conventional glioma classification that may aid in prognosis, treatment selection, and therapeutic trial design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noonan syndrome (NS) and Noonan-like syndromes (NLS) are autosomal dominant disorders caused by heterozygous mutations in genes of the RAS/MAPK pathway. The aim of the study was to construct specific growth charts for patients with NS and NLS. Anthropometric measurements (mean of 4.3 measurements per patient) were obtained in a mixed cross-sectional and longitudinal mode from 127 NS and 10 NLS patients with mutations identified in PTPN11 (n?=?90), SOS1 (n?=?14), RAF1 (n?=?10), KRAS (n?=?8), BRAF (n?=?11), and SHOC2 (n?=?4) genes. Height, weight, and body mass index (BMI) references were constructed using the lambda, mu, sigma (LMS) method. Patients had birth weight and length within normal ranges for gestational age although a higher preterm frequency (16%) was observed. Mean final heights were 157.4?cm [-2.4 standard deviation score (SDS)] and 148.4?cm (-2.2?SDS) for adult males and females, respectively. BMI SDS was lower when compared to Brazilian standards (BMI SDS of -0.9 and -0.5 SDS for males and females, respectively). Patients harboring mutations in RAF1 and SHOC2 gene were shorter than other genotypes, whereas patients with SOS1 and BRAF mutations had more preserved postnatal growth. In addition, patients with RAF1 and BRAF had the highest BMI whereas patients with SHOC2 and KRAS mutations had the lowest BMI. The present study established the first height, weight, and BMI reference curves for NS and NLS patients, based only on patients with a proven molecular cause. These charts can be useful for the clinical follow-up of patients with NS and NLS. (c) 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS), and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL) patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human luteinizing hormone/chorionic gonadotropin receptor (LHCGR) plays a fundamental role in male and female reproductive physiology. Over the past 15 years, several homozygous or compound heterozygous loss-of-function mutations in the LHCGR gene have been described in males and females. In genetic males, mutations in LHCGR were associated with distinct degrees of impairment in pre- and postnatal testosterone secretion resulting in a phenotypic spectrum. Patients with the severe form of LH resistance have predominantly female external genitalia and absence of secondary sex differentiation at puberty. Patients with milder forms have predominantly male external genitalia with micropenis and/or hypospadias or only infertility without ambiguity. The undermasculization is associated with low basal, as well as human CG-stimulated, testosterone levels and elevated LH levels after pubertal age, without abnormal step-up in testosterone biosynthesis precursors. The testes have only slightly reduced size but mature Leydig cells are absent or scarce (Leydig cell hypoplasia). Genetic females with inactivating LHCGR mutations have female external genitalia, spontaneous breast and pubic hair development at puberty, and normal or late menarche followed by oligoamenorrhea and infertility. Estradiol and progesterone levels are normal for the early to midfollicular phase, but do not reach ovulatory or luteal phase levels. Serum LH levels are high whereas follicle-stimulating hormone levels are normal or only slightly increased. Pelvic ultrasound has demonstrated a small or normal uterus and normal or enlarged ovaries with cysts. The inactivating mutations of the LHCGR have provided important insights into distinct physiological roles of LH in reproduction of both sexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic embryogenesis is an in vitro morphogenetic route in which isolated cells or a small group of somatic cells give rise to bipolar structures resembling zygotic embryos. Lipids, carbohydrates, and proteins are major compounds in plant and animal metabolism. Comparative analysis along different developmental stages of Acca sellowiana (Myrtaceae) zygotic and somatic embryos, revealed a progressive increase in levels of total lipids. A high degree of similarity could be found in the total lipids composition between A. sellowiana somatic and zygotic embryos. High lipid levels were found in zygotic embryos in the torpedo and cotyledonary stages, and these levels increased according to the progression in the developmental stages. Somatic embryos obtained through direct embryogenesis route showed higher levels of lipids than in indirect somatic embryogenesis. The compounds most frequently were linoleic acid (C18:2), palmitic (C16:0) and oleic (C18:1). These results indicate a high similarity degree of accumulation of total lipids, regardless of zygotic or somatic embryogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physiological and molecular processes controlling zygotic and somatic embryo development in angiosperms are mediated by a hierarchically organized program of gene expression. Despite the overwhelming information available about the molecular control of the embryogenic processes in angiosperms, little is known about these processes in gymnosperms. Here we describe the cloning and characterization of the expression pattern of the Araucaria angustifolia putative homolog of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene family member, designated as AaSERK1. The Araucaria AaSERK1 gene encodes a leucine-rich repeat receptor-like kinase showing significant similarity to angiosperm homologs of SERK1, known to be involved in early somatic and zygotic embryogenesis. Accordingly, RT-PCR results showed that AaSERK1 is preferentially expressed in Araucaria embryogenic cell cultures. Additionally, in situ hybridization results showed that AaSERK1 transcripts initially accumulate in groups of cells at the periphery of the embryogenic calli and then are restricted to the developing embryo proper. Our results indicate that AaSERK1 might have a role during somatic embryogenesis in Araucaria, suggesting a potentially conserved mechanism, involving SERK-related leucine-rich repeat receptor-like kinases, in the embryogenic processes among all seed plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To investigate LIN28B gene variants in children with idiopathic central precocious puberty (CPP). Patients and Methods: We studied 178 Brazilian children with CPP (171 girls, 16.8% familial cases). A large multiethnic group (1,599 subjects; Multiethnic Cohort, MEC) was used as control. DNA analysis and biochemical in vitro studies were performed. Results: A heterozygous LIN28B variant, p. H199R, was identified in a girl who developed CPP at 5.2 years. This variant was absent in 310 Brazilian control individuals, but it was found in the same allele frequency in women from the MEC cohort, independent of the age of menarche. Functional studies revealed that when ectopically expressed in cells, the mutant protein was capable of binding pre-let-7 microRNA and inhibiting let-7 expression to the same extent as wild-type Lin28B protein. Other rare LIN28B variants (p.P173P, c.198+32_33delCT, g.9575731A>C and c.-11C>T) were identified in CPP patients and controls. Therefore, no functional mutation was identified. Conclusion: In vitro studies revealed that the rare LIN28B p.H199R variant identified in a girl with CPP does not affect the Lin28B function in the regulation of let-7 expression. Although LIN28B SNPs were associated with normal pubertal timing, rare variations in this gene do not seem to be commonly involved in the molecular pathogenesis of CPP. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Callogenesis, somatic embryogenesis, and regeneration were obtained from tissues of unfertilized ovaries of sweet orange (Citrus sinensis Osbeck.) cv. Tobias. The influence of two modified basal media, woody plant medium (WPM) and N6 medium, to induce callus formation from pistils was determined. Overall, high frequencies of callogenesis were observed when either medium was used. However, initial culture of explants in WPM medium followed by transfer of callus to N6 medium resulted in higher frequency of callus induction (of 2.30 callus per explant that were larger than 0.5 cm in size), and of subsequent development of embryogenic callus (10%). A total of 125 somatic embryos were obtained. After 6 months of culture, 72% of somatic embryos germinated into plantlets. These plantlets were subsequently micrografted in vitro, and then acclimatized. Ploidy of these plants were determined using flow cytometry and TRAPS molecular markers were used to confirm their maternal origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazilian pine (Araucaria angustifolia (Bert) O. Ktze) is the only native conifer species with economic importance in Brazil. Recently, due to intensive exploitation Brazilian pine was included in the official list of endangered Brazilian plants, under the "vulnerable" category. Biotechnology tools like somatic embryogenesis (SE) are potentially useful for mass clonal propagation and ex situ conservation strategies of commercial and endangered plant species. In spite of that, numerous obstacles still hamper the full application of SE technology for a wider range of species, including Brazilian pine. To enhance somatic embryogenesis in Brazilian pine and to gain a better understanding of the molecular events associated with somatic embryo development, we analyzed the steady-state transcript levels of genes known to regulate somatic embryogenesis using semiquantitative reverse transcription polymerase chain reaction (sqRT-PCR). These genes included Argonaute (AaAGO), Cup-shaped cotyledon1 (AaCUC), wushel-related WOX (AaWOX), a S-locus lectin protein kinase (AaLecK), Scarecrow- like (AaSCR), Vicilin 7S (AaVIC), Leafy Cotyledon 1 (AaLEC), and a Reversible glycosylated polypeptide (AaRGP). Expression patterns of these selected genes were investigated in embryogenic cultures undergoing different stages of embryogenesis, and all the way to maturation. Up-regulation of AaAGO, AaCUC, AaWOX, AaLecK, and AaVIC was observed during transition of somatic embryos from stage I to stage II. During the maintenance phase of somatic embryogenesis, expression of AaAGO and AaSCR, but not AaRPG and AaLEC genes was influenced by presence/ absence of plant growth regulators, both auxins and cytokinins. The results presented here provide new insights on the molecular mechanisms responsible for somatic embryo formation, and how selected genes may be used as molecular markers for Brazilian pine embryogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH) are rare, autosomal recessive disorders of the connective tissue caused by mutations in the gene encoding the anthrax toxin receptor 2 protein (ANTXR2) located on chromosome 4q21. Characteristically, these conditions present with overlapping clinical features, such as nodules and/or pearly papules, gingival hyperplasia, flexion contractures of the joints, and osteolytic bone defects. The present report describes a pair of sibs and three other JHF/ISH patients whose diagnoses were based on typical clinical manifestations and confirmed by histopathologic analyses and/or molecular analysis. A comparison of ISH and JHF, additional thoughts about new terminology (hyaline fibromatosis syndrome) and a modified grading system are also included. (C) 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutieres syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite advances in our understanding of the mechanisms involved in sex determination and differentiation, the specific roles of many genes in these processes are not completely understood in humans. Both DMRT1 and FGF9 are among this group of genes. Dmrt1 controls germ cell differentiation, proliferation, migration and pluripotency and Sertoli cell proliferation and differentiation. Fgf9 has been considered a critical factor in early testicular development and germ cell survival in mice. We screened for the presence of DMRT1 and FGF9 mutations in 33 patients with 46,XY gonadal dysgenesis. No deletions in either DMRT1 or FGF9 were identified using the MLPA technique. Eight allelic variants of DMRT1 were identified, and in silico analysis suggested that the novel c.968-15insTTCTCTCT variant and the c.774G>C (rs146975077) variant could have potentially deleterious effects on the DMRT1 protein. Nine previously described FGF9 allelic variants and six different alleles of the 3' UTR microsatellite were identified. However, none of these DMRT1 or FGF9 variants was associated with increased 46,XY gonadal dysgenesis. In conclusion, our study suggests that neither DMRT1 nor FGF9 abnormalities are frequently involved in dysgenetic male gonad development in patients with non-syndromic 46,XY disorder of sex development. (C) 2012 Published by Elsevier Masson SAS.