22 resultados para Residue curve maps
Resumo:
The definition of the sample size is a major problem in studies of phytosociology. The species accumulation curve is used to define the sampling sufficiency, but this method presents some limitations such as the absence of a stabilization point that can be objectively determined and the arbitrariness of the order of sampling units in the curve. A solution to this problem is the use of randomization procedures, e. g. permutation, for obtaining a mean species accumulation curve and empiric confidence intervals. However, the randomization process emphasizes the asymptotical character of the curve. Moreover, the inexistence of an inflection point in the curve makes it impossible to define objectively the point of optimum sample size.
Resumo:
This study uses several measures derived from the error matrix for comparing two thematic maps generated with the same sample set. The reference map was generated with all the sample elements and the map set as the model was generated without the two points detected as influential by the analysis of local influence diagnostics. The data analyzed refer to the wheat productivity in an agricultural area of 13.55 ha considering a sampling grid of 50 x 50 m comprising 50 georeferenced sample elements. The comparison measures derived from the error matrix indicated that despite some similarity on the maps, they are different. The difference between the estimated production by the reference map and the actual production was of 350 kilograms. The same difference calculated with the mode map was of 50 kilograms, indicating that the study of influential points is of fundamental importance to obtain a more reliable estimative and use of measures obtained from the error matrix is a good option to make comparisons between thematic maps.
Resumo:
We study the coincidence theory of maps between two manifolds of the same dimension from an axiomatic viewpoint. First we look at coincidences of maps between manifolds where one of the maps is orientation true, and give a set of axioms such that characterizes the local index (which is an integer valued function). Then we consider coincidence theory for arbitrary pairs of maps between two manifolds. Similarly we provide a set of axioms which characterize the local index, which in this case is a function with values in Z circle plus Z(2). We also show in each setting that the group of values for the index (either Z or Z circle plus Z(2)) is determined by the axioms. Finally, for the general case of coincidence theory for arbitrary pairs of maps between two manifolds we provide a set of axioms which characterize the local Reidemeister trace which is an element of an abelian group which depends on the pair of functions. These results extend known results for coincidences between orientable differentiable manifolds. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A singular Riemannian foliation F on a complete Riemannian manifold M is called a polar foliation if, for each regular point p, there is an immersed submanifold Sigma, called section, that passes through p and that meets all the leaves and always perpendicularly. A typical example of a polar foliation is the partition of M into the orbits of a polar action, i.e., an isometric action with sections. In this article we prove that the leaves of H : M -> Sigma, coincide with the level sets of a smooth map H: M -> Sigma, if M is simply connected. In particular, the orbits of a polar action on a simply connected space are level sets of an isoparametric map. This result extends previous results due to the author and Gorodski, Heintze, Liu and Olmos, Carter and West, and Terng.
Resumo:
We show how to construct a topological Markov map of the interval whose invariant probability measure is the stationary law of a given stochastic chain of infinite order. In particular we characterize the maps corresponding to stochastic chains with memory of variable length. The problem treated here is the converse of the classical construction of the Gibbs formalism for Markov expanding maps of the interval.
Resumo:
We consider various problems regarding roots and coincidence points for maps into the Klein bottle . The root problem where the target is and the domain is a compact surface with non-positive Euler characteristic is studied. Results similar to those when the target is the torus are obtained. The Wecken property for coincidences from to is established, and we also obtain the following 1-parameter result. Families which are coincidence free but any homotopy between and , , creates a coincidence with . This is done for any pair of maps such that the Nielsen coincidence number is zero. Finally, we exhibit one such family where is the constant map and if we allow for homotopies of , then we can find a coincidence free pair of homotopies.
Resumo:
This study uses several measures derived from the error matrix for comparing two thematic maps generated with the same sample set. The reference map was generated with all the sample elements and the map set as the model was generated without the two points detected as influential by the analysis of local influence diagnostics. The data analyzed refer to the wheat productivity in an agricultural area of 13.55 ha considering a sampling grid of 50 x 50 m comprising 50 georeferenced sample elements. The comparison measures derived from the error matrix indicated that despite some similarity on the maps, they are different. The difference between the estimated production by the reference map and the actual production was of 350 kilograms. The same difference calculated with the mode map was of 50 kilograms, indicating that the study of influential points is of fundamental importance to obtain a more reliable estimative and use of measures obtained from the error matrix is a good option to make comparisons between thematic maps.