36 resultados para Reatividade vascular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 +/- 17.3 versus 209 +/- 10.9 mm Hg in hypertensive controls, p < 0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p < 0.05). Doxycycline also decreased hypertension-induced oxidative stress (p <= 0.05), higher MMP activity (p < 0.01) and improved NO levels in aortic endothelial cells (p < 0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the role of reactive oxygen species (ROS) and nitric oxide (NO) in ethanol-induced relaxation. Vascular reactivity experiments showed that ethanol (0.03-200 mmol/L) induced relaxation in endothelium-intact and denuded rat aortic rings isolated from male Wistar rats. Pre-incubation of intact or denuded rings with L-NAME (non selective NOS inhibitor, 100 mu mol/L), 7-nitroindazole (selective nNOS inhibitor, 100 mu mol/L), ODQ (selective inhibitor of guanylyl cyclase enzyme, I mu mol/L), glibenclamide (selective blocker of ATP-sensitive K+ channels, 3 mu mol/L) and 4-aminopyridine (selective blocker of voltage-dependent K+ channels, 4-AP, 1 mmol/L) reduced ethanol-induced relaxation. Similarly, tiron (superoxide anion (O-2(-)) scavenger, 1 mmol/L) and catalase (hydrogen peroxide (H2O2) scavenger, 300 U/mL) reduced ethanol-induced relaxation to a similar extent in both endothelium-intact and denuded rings. Finally, prodifen (non-selective cytochrome P450 enzymes inhibitor, 10 mu mol/L) and 4-methylpyrazole (selective alcohol dehydrogenase inhibitor, 10 mu mol/L) reduced ethanol-induced relaxation. In cultured aortic vascular smooth muscle cells (VSMCs), ethanol stimulated generation of NO, which was significantly inhibited by L-NAME. In endothelial cells, flow cytometry studies showed that ethanol increased cytosolic Ca2+ concentration ([Ca2+]c), O-2(-) and cytosolic NO concentration ([NO]c). Tiron inhibited ethanol-induced increase in [Ca-2]c and [NO]c. The major new finding of this work is that ethanol induces relaxation via redox-sensitive and NO-cGMP-dependent pathways through direct effects on ROS production and NO signaling. These findings identify putative molecular mechanisms whereby ethanol, at pharmacological concentrations, influences vascular reactivity. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hybrid material with excellent mechanical and biological properties is produced by electrospinning a co-solution of PET and collagen. The fibers are mapped using SEM, confocal Raman microscopy and collagenase digestion assays. Fibers of different compositions and morphologies are intermingled within the same membrane, resulting in a heterogeneous scaffold. The collagen distribution and exposure are found to depend on the PET/collagen ratio. The materials are chemically and mechanically characterized and biologically tested with fibroblasts (3T3-L1) and a HUVEC culture in vitro. All of the hybrid scaffolds show better cell attachment and proliferation than PET. These materials are potential candidates to be used as vascular grafts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims: beta(2)-adrenoceptor (beta(2)-AR) activation induces smooth muscle relaxation and endothelium-derived nitric oxide (NO) release. However, whether endogenous basal beta(2)-AR activity controls vascular redox status and NO bioavailability is unclear. Thus, we aimed to evaluate vascular reactivity in mice lacking functional beta(2)-AR (beta 2KO), focusing on the role of NO and superoxide anion. Methods and Results: Isolated thoracic aortas from beta 2KO and wild-type mice (WT) were studied. beta 2KO aortas exhibited an enhanced contractile response to phenylephrine compared to WT. Endothelial removal and L-NAME incubation increased phenylephrine-induced contraction, abolishing the differences between beta 2KO and WT mice. Basal NO availability was reduced in aortas from beta 2KO mice. Incubation of beta 2KO aortas with superoxide dismutase or NADPH inhibitor apocynin restored the enhanced contractile response to phenylephrine to WT levels. beta 2KO aortas exhibited oxidative stress detected by enhanced dihydroethidium fluorescence, which was normalized by apocynin. Protein expression of eNOS was reduced, while p47(phox) expression was enhanced in beta 2KO aortas. Conclusions: The present results demonstrate for the first time that enhanced NADPH-derived superoxide anion production is associated with reduced NO bioavailability in aortas of beta 2KO mice. This study extends the knowledge of the relevance of the endogenous activity of beta(2)-AR to the maintenance of the vascular physiology. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aiming to compare the effect of different light sources for dental bleaching on vascular permeability of dental pulps, forty-eight incisors were used. The bleaching agent (35% hydrogen peroxide) was activated by halogen light; LED (Light Emitting Diode) or LED, followed by laser phototherapy (LPT) (lambda = 780 nm; 3 J/cm(2)). After the bleaching procedures, the animals received an intra-arterial dye injection and one hour later were sacrificed. The teeth were diaphanized and photographed. The amount of blue stain content of each dental pulp was quantified using a computer imaging program. The data was statistically compared (p <= 0.05). The results showed a significant higher (p <= 0.01) dye content in the groups bleached with halogen light, compared with the control, LED and LED plus LPT groups. Thus, tooth bleaching activated by LED or LED plus LPT induces lesser resulted in increased vascular permeability than halogen light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testosterone has been implicated in vascular remodeling associated with hypertension. Molecular mechanisms underlying this are elusive, but oxidative stress may be important. We hypothesized that testosterone stimulates generation of reactive oxygen species (ROS) and migration of vascular smooth muscle cells (VSMCs), with enhanced effects in cells from spontaneously hypertensive rats (SHRs). The mechanisms (genomic and nongenomic) whereby testosterone induces ROS generation and the role of c-Src, a regulator of redox-sensitive migration, were determined. VSMCs from male Wistar-Kyoto rats and SHRs were stimulated with testosterone (10(-7) mol/L, 0-120 minutes). Testosterone increased ROS generation, assessed by dihydroethidium fluorescence and lucigenin-enhanced chemiluminescence (30 minutes [SHR] and 60 minutes [both strains]). Flutamide (androgen receptor antagonist) and actinomycin D (gene transcription inhibitor) diminished ROS production (60 minutes). Testosterone increased Nox1 and Nox4 mRNA levels and p47phox protein expression, determined by real-time PCR and immunoblotting, respectively. Flutamide, actinomycin D, and cycloheximide (protein synthesis inhibitor) diminished testosterone effects on p47phox. c-Src phosphorylation was observed at 30 minutes (SHR) and 120 minutes (Wistar-Kyoto rat). Testosterone-induced ROS generation was repressed by 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine (c-Src inhibitor) in SHRs and reduced by apocynin (antioxidant/NADPH oxidase inhibitor) in both strains. Testosterone stimulated VSMCs migration, assessed by the wound healing technique, with greater effects in SHRs. Flutamide, apocynin, and 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day] pyrimidin-4-amine blocked testosterone-induced VSMCs migration in both strains. Our study demonstrates that testosterone induces VSMCs migration via NADPH oxidase-derived ROS and c-Src-dependent pathways by genomic and nongenomic mechanisms, which are differentially regulated in VSMCs from Wistar-Kyoto rats and SHRs. (Hypertension. 2012; 59: 1263-1271.). Online Data Supplement

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness. Methodology/Principal Findings: Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NOx-), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and N-epsilon-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NOx- levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NOx- levels were partially restored. Conclusion: Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic rats, however, a massive production of AGEs still affecting relaxing responses possibly involving other endothelium-dependent vasodilator agents, mainly in coronary artery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To investigate, in male Wistar rats, the effects of long-term moderate red wine (RW) consumption (equivalent to similar to 0.15 mg% resveratrol RS), or RS in low (L, 0.15 mg%) or high (H, 400 mg%) doses in chow. Background: Both RW and RS exhibit cardioprotection. RS extends lifespan in obese rats. It is unclear whether RW consumption or low-dose RS delay vascular aging and prolong life span in the absence of overt risk factors. Methods: Endpoints were aerobic performance, exercise capacity, aging biomarkers (p53,p16,p21, telomere length and telomerase activity in aortic homogenates), vascular reactivity. Data were compared with controls (C) given regular chow. Results: Expressions of p53 decreased similar to 50% similar to with RW and LRS (p < 0.05 vs. C), p16 by similar to 29% with RW (p < 0.05 vs. C) and p21 was unaltered. RW and LRS increased telomere length >6.5-fold vs. C, and telomerase activity increased with LRS and HRS. All treatments increased aerobic capacity (C 32.5 +/- 1.2, RW 38.7 + 1.7, LRS 38.5 + 1.6, HRS 38.3 + 1.8 mlO2 min(-1) kg(-1)), and RW or LRS also improved time of exercise tolerance vs. C (p < 0.05). Endothelium-dependent relaxation improved with all treatments vs. C. Life span, however, was unaltered with each treatment vs. C = 673 +/- 30 days, p = NS. Conclusions: RW and LRS can preserve vascular function indexes in normal rats, although not extending life span. These effects were translated into better aerobic performance and exercise capacity. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atherosclerosis and vascular calcification (VC) progression in chronic kidney disease is favored by disturbances of mineral metabolism. We compared the effect of phosphate binder lanthanum (La) carbonate with sevelamer-HCl on atherosclerosis, VC and bone structure and function in mice with chronic renal failure (CRF). Apolipoprotein E-deficient (apoE(-/-)) mice were randomized to one non-CRF and three CRF groups, fed with standard diet (one non-CRF and one CRF) or diet supplemented with either 3% lanthanum carbonate (La3%) or 3% sevelamer-HCl (Sev3%). Both La3% and Sev3% supplemented CRF mice displayed a decrease of serum phosphorus, calcification at both intimal and medial aortic sites and atherosclerosis. This was associated with a reduction of plaque Type I collagen expression by both binders and of positive nitrotyrosine staining in response to sevelamer-HCl only. Increased mineral apposition and bone formation rates in unsupplemented CRF mice were reduced by Sev3% but not by La3%. The beneficial effects of La carbonate and sevelamer-HCl on the progression of VC and atherosclerosis in CRF mice could be mainly due to a decrease in phosphate retention and likewise a reduction of arterial Type I collagen expression. The effect of La carbonate differed from that of sevelamer-HCl in that it did not appear to exert its vascular effects via changes in oxidative stress or bone remodeling in the present model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bannayan-Riley-Ruvalcaba syndrome (BRRS) is a rare autosomal, dominantly-inherited, hamartoma syndrome with distinct phenotypic features. Mutations in the PTEN gene have been identified in PTEN hamartoma tumor syndromes. Our aim was to determine the correlation of phenotype-genotype relationships in a BRRS case. We have evaluated a PTEN mutation in a patient with vascular anomalies and the phenotypic findings of BRRS. We described an 8-year-old girl with the clinical features of BRRS, specifically with vascular anomalies. The mutation in the PTEN gene was identified by DNA sequencing. In our patient, we defined a de novo nonsense R335X (c. 1003 C>T) mutation in exon 8, which results in a premature termination codon. Due to vascular anomalies and hemangioma, the patient's left leg was amputated 1 year after the hemangioma diagnosis. Bannayan - Riley - Ruvalcaba syndrome patients with macrocephaly and vascular anomalies should be considered for PTEN mutation analysis and special medical care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Introduction Several studies link hematological dysfunction to severity of sepsis. Previously we showed that platelet-derived microparticles from septic patients induce vascular cell apoptosis through the NADPH oxidase-dependent release of superoxide. We sought to further characterize the microparticle-dependent vascular injury pathway. Methods During septic shock there is increased generation of thrombin, TNF-α and nitric oxide (NO). Human platelets were exposed for 1 hour to the NO donor diethylamine-NONOate (0.5 μM), lipopolysaccharide (LPS; 100 ng/ml), TNF-α (40 ng/ml), or thrombin (5 IU/ml). Microparticles were recovered through filtration and ultracentrifugation and analyzed by electron microscopy, flow cytometry or Western blotting for protein identification. Redox activity was characterized by lucigenin (5 μM) or coelenterazine (5 μM) luminescence and by 4,5-diaminofluorescein (10 mM) and 2',7'-dichlorofluorescein (10 mM) fluorescence. Endothelial cell apoptosis was detected by phosphatidylserine exposure and by measurement of caspase-3 activity with an enzyme-linked immunoassay. Results Size, morphology, high exposure of the tetraspanins CD9, CD63, and CD81, together with low phosphatidylserine, showed that platelets exposed to NONOate and LPS, but not to TNF-α or thrombin, generate microparticles similar to those recovered from septic patients, and characterize them as exosomes. Luminescence and fluorescence studies, and the use of specific inhibitors, revealed concomitant superoxide and NO generation. Western blots showed the presence of NO synthase II (but not isoforms I or III) and of the NADPH oxidase subunits p22phox, protein disulfide isomerase and Nox. Endothelial cells exposed to the exosomes underwent apoptosis and caspase-3 activation, which were inhibited by NO synthase inhibitors or by a superoxide dismutase mimetic and totally blocked by urate (1 mM), suggesting a role for the peroxynitrite radical. None of these redox properties and proapoptotic effects was evident in microparticles recovered from platelets exposed to thrombin or TNF-α. Conclusion We showed that, in sepsis, NO and bacterial elements are responsible for type-specific platelet-derived exosome generation. Those exosomes have an active role in vascular signaling as redox-active particles that can induce endothelial cell caspase-3 activation and apoptosis by generating superoxide, NO and peroxynitrite. Thus, exosomes must be considered for further developments in understanding and treating vascular dysfunction in sepsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to examine a case report of vascular leiomyoma located in the oral mucosa of the oral cavity. Vascular leiomyoma is a benign tumor arising from smooth muscle. One factor that makes vascular leiomyomas in the oral cavity rare is that there is little smooth muscle in the mouth. The most common histological subtype in the oral cavity is the vascular subtype. The greatest difficulty in histological diagnosis of this entity is the similarity in morphology with other malignancies, particularly of neural or fibroblastic lineage. Wide surgical resection is the only treatment reported in the literature with good results. The recurrence rate is very low if complete resection is achieved. The study of rare or unusual lesions is very important for the clinical diagnosis of vascular leiomyoma

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FUNDAMENTO: A hipertensão pulmonar é associada ao pior prognóstico no pós-transplante cardíaco. O teste de reatividade pulmonar com Nitroprussiato de Sódio (NPS) está associado a elevados índices de hipotensão arterial sistêmica, disfunção ventricular do enxerto transplantado e elevadas taxas de desqualificação para o transplante. OBJETIVO: Neste estudo, objetivou-se comparar os efeitos do Sildenafil (SIL) e NPS sobre variáveis hemodinâmicas, neuro-hormonais e ecocardiográficas durante teste de reatividade pulmonar. MÉTODOS: Os pacientes foram submetidos, simultaneamente, ao cateterismo cardíaco direito, ao ecocardiograma e à dosagem de BNP e gasometria venosa, antes e após administração de NPS (1 - 2 µg/Kg/min) ou SIL (100 mg, dose única). RESULTADOS: Ambos reduziram a hipertensão pulmonar, porém o nitrato promoveu hipotensão sistêmica significativa (Pressão Arterial Média - PAM: 85,2 vs. 69,8 mmHg, p < 0,001). Ambos reduziram as dimensões cardíacas e melhoraram a função cardíaca esquerda (NPS: 23,5 vs. 24,8 %, p = 0,02; SIL: 23,8 vs. 26 %, p < 0,001) e direita (SIL: 6,57 ± 2,08 vs. 8,11 ± 1,81 cm/s, p = 0,002; NPS: 6,64 ± 1,51 vs. 7,72 ± 1,44 cm/s, p = 0,003), medidas pela fração de ejeção ventricular esquerda e Doppler tecidual, respectivamente. O SIL, ao contrário do NPS, apresentou melhora no índice de saturação venosa de oxigênio, medido pela gasometria venosa. CONCLUSÃO: Sildenafil e NPS são vasodilatadores que reduzem, de forma significativa, a hipertensão pulmonar e a geometria cardíaca, além de melhorar a função biventricular. O NPS, ao contrário do SIL, esteve associado a hipotensão arterial sistêmica e piora da saturação venosa de oxigênio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cinco cavalos adultos foram submetidos à coleta de medula óssea do esterno e de tecido adiposo da região glútea. As amostras foram processadas para obtenção da fração mononuclear da medula óssea e fração vascular estromal do tecido adiposo, o número de células obtidas e a viabilidade celular foram determinados. Em seguida, realizou-se o congelamento das amostras em solução contendo 20% de soro fetal bovino e 10% de dimetilsulfóxido. Depois de um mês, realizou-se o descongelamento das amostras e a viabilidade celular foi novamente mensurada. Os resultados revelaram que as técnicas utilizadas tanto para coleta de medula óssea quanto de tecido adiposo em equinos são simples, rápidas e seguras. As metodologias adotadas para o processamento das amostras foram eficientes, obtendo-se aproximadamente 95% de viabilidade celular. Após o descongelamento, a viabilidade média das amostras de células mononucleares da medula óssea foi de 86% e da fração vascular estromal do tecido adiposo de 64%. Frente à importância da terapia celular na clínica médica de equinos, concluiu-se que é necessária a realização de mais estudos, visando padronizar uma técnica de criopreservação que mantenha a integridade das células da fração mononuclear da medula óssea e da fração vascular estromal do tecido adiposo de equinos.