26 resultados para RESONANCES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present experimental and theoretical cross sections for positron collisions with ethene molecules. The experimental total cross sections (TCSs) were obtained with a linear transmission technique, for energies from 0.1 eV up to 70 eV. The calculations employed the Schwinger multichannel method and were performed in the static plus polarization approximation for energies up to 10 eV. Our calculated elastic cross sections indicate a Ramsauer-Townsend minimum around 2.8 eV and a virtual state, in agreement with previous calculations by da Silva et al. [Phys. Rev. Lett. 77, 1028 (1996)]. We found reasonable agreement between the calculated elastic integral cross section and the measured total cross section below the positronium formation threshold. The present results are also in quite good agreement with available theoretical and experimental data, although for the experiments this is only true for TCSs above about 7 eV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at root s = 7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L-int = 5.6 nb(-1). The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p(t) > 1,3 GeV/c and rapidity vertical bar y vertical bar < 0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the psi(2S) and chi(c) resonances, is sigma(prompt J/psi) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 8.3 +/- 0.8(stat.) +/- 1.1 (syst.)(-1.4)(+1.5) (syst. pol.) mu b. The cross section for the production of b-hadrons decaying to J/psi with p(t) > 1.3 GeV/c and vertical bar y vertical bar < 0.9 is a sigma(J/psi <- hB) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 1.46 +/- 0.38 (stat.)(-0.32)(+0.26) (syst.) mu b. The results are compared to QCD model predictions. The shape of the p(t) and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b (b) over bar pair total cross section and d sigma/dy at mid-rapidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lattice calculations of the QCD trace anomaly at temperatures T < 160 MeV have been shown to match hadron resonance gas model calculations, which include an exponentially rising hadron mass spectrum. In this paper we perform a more detailed comparison of the model calculations to lattice data that confirms the need for an exponentially increasing density of hadronic states. Also, we find that the lattice data is compatible with a hadron density of states that goes as rho(m) similar to m(-a) exp(m/T-H) at large m with a > 5/2 (where T-H similar to 167 MeV). With this specific subleading contribution to the density of states, heavy resonances are most likely to undergo two-body decay (instead of multiparticle decay), which facilitates their inclusion into hadron transport codes. Moreover, estimates for the shear viscosity and the shear relaxation time coefficient of the hadron resonance model computed within the excluded volume approximation suggest that these transport coefficients are sensitive to the parameters that define the hadron mass spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Letter reports an investigation on the optical properties of copper nanocubes as a function of size as modeled by the discrete dipole approximation. In the far-field, our results showed that the extinction resonances shifted from 595 to 670 nm as the size increased from 20 to 100 nm. Also, the highest optical efficiencies for absorption and scattering were obtained for nanocubes that were 60 and 100 nm in size, respectively. In the near-field, the electric-field amplitudes were investigated considering 514, 633 and 785 nm as the excitation wavelengths. The E-fields increased with size, being the highest at 633 nm. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many of the discovered exoplanetary systems are involved inside mean-motion resonances. In this work we focus on the dynamics of the 3:1 mean-motion resonant planetary systems. Our main purpose is to understand the dynamics in the vicinity of the apsidal corotation resonance (ACR) which are stationary solutions of the resonant problem. We apply the semi-analytical method (Michtchenko et al., 2006) to construct the averaged three-body Hamiltonian of a planetary system near a 3:1 resonance. Then we obtain the families of ACR, composed of symmetric and asymmetric solutions. Using the symmetric stable solutions we observe the law of structures (Ferraz-Mello,1988), for different mass ratio of the planets. We also study the evolution of the frequencies of σ1, resonant angle, and Δω, the secular angle. The resonant domains outside the immediate vicinity of ACR are studied using dynamical maps techniques. We compared the results obtained to planetary systems near a 3:1 MMR, namely 55 Cnc b-c, HD 60532 b-c and Kepler 20 b-c.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract This paper describes a design methodology for piezoelectric energy harvester s that thinly encapsulate the mechanical devices and expl oit resonances from higher- order vibrational modes. The direction of polarization determines the sign of the pi ezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Com- bining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direc- tion. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequen- tial linear programming on the early stage of the opti- mization, and the phase field method on the latter stage

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single and double strand breaks in DNA can be caused by low-energy electrons, the most abundant secondary products of the interaction of ionizing radiation to the biological matter. Attachment of these electrons to biomolecules lead to the formation of transient negative ions (TNIs) [1], often referred to as resonances, a process that may lead to significant vibrational excitation and dissociation. In the present study, we employ the parallel version [2] of the Schwinger Multichannel Method implemented with pseudopotentials [3] to obtain the shape resonance spectrum of cytosine-guanine (CG) pairs, with special attention to π* transient anion states. Recent experimental studies pointed out a quasi-continuum vibrational excitation spectrum for electron collisions against formic acid dimers [4], suggesting that electron attachment into π* valence orbitals could induce proton transfer in these dimers. In addition, our previous studies on the shape resonance spectra of the hydrogen-bonded complexes comprising formic acid and formamide units indicated interesting electron delocalization (localization) effects arising from the presence (absence) of inversion symmetry centers in the complexes [5]. In the present work, we extend the studies on hydrogen-bonded complexes to the CG pair, where localization of ¼¤ anions would be expected, based on the previous results. References [1]. B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, L. Sanche, Science 287, 1658 (2000). [2]. J. S. dos Santos, R. F. da Costa , M. T. do N. Varella, J. Chem. Phys. 136, 084307 (2012). [3]. M. H. F. Bettega, L. G. Ferreira, M. A. P. Lima, Phys. Rev. A 47, 1111 (1993). [4]. M. Allan, Phys. Rev. Lett. 98, 123201 (2007). [5]. T. C. Freitas, S. dA. Sanchez, M. T. do N. Varella, M. H. F. Bettega, Phys. Rev. A 84, 062714 (2011).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the shape resonance spectra of uracil, 5-fluorouracil, and 5-chlorouracil, as obtained from fixed-nuclei elastic scattering calculations performed with the Schwinger multichannel method with pseudopotentials. Our results are in good agreement with the available electron transmission spectroscopy data, and support the existence of three π* resonances in uracil and 5-fluorouracil. As expected, the anion states are more stable in the substituted molecules than in uracil. Since the stabilization is stronger in 5-chlorouracil, the lowest π* resonance in this system becomes a bound anion state. The present results also support the existence of a low-lying σ ∗ CCl shape resonance in 5- chlorouracil. Exploratory calculations performed at selected C–Cl bond lengths suggest that the σ ∗ CCl resonance could couple to the two lowest π* states, giving rise to a very rich dissociation dynamics. These facts would be compatible with the complex branching of the dissociative electron attachment cross sections, even though we cannot discuss any details of the vibration dynamics based only on the present fixed-nuclei results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alpha cluster phenomenon in the light nuclei structure has been the subject of a longtime investigation since the proposal of the Ikeda diagrams, however the mechanism of the cluster formation is still not completely understood. In fact, if the clusters have a fairly rigid crystal-like or a gas-like structure remains an open question. The interpretation of the Hoyle state as an α condensate brought a renewed interest to this subject, in particular to resonances analogous to the Hoyle state. In this context the study of the experimental evolution of the α-cluster phenomenon through (6Li,d) transfer reactions has been performed in São Paulo. Particularly important are the regions around the nα thresholds where the α-cluster structure states are predicted. The resonant states around the 4α threshold in the nucleus 16O are the focus of the present contribution. The 12C(6Li,d)16O reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. Resonant states above the α threshold were measured and an energy resolution of 15-30 keV allows to define states previously unresolved. The angular distributions of the absolute cross sections were determined in a range of 4-40 degree in the center of mass system and up to 17 MeV excitation energy. The upper limit for the resonance widths in the crucial region of the 4α threshold was obtained. These values revealed to be at least a factor three smaller than the ones previously reported in the literature, indicating that the α cluster structure information on this region should be revised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactions initiated by collisions with low-energy secondary electrons has been found to be the prominent mechanism toward the radiation damage on living tissues through DNA strand breaks. Now it is widely accepted that during the interaction with these secondary species the selective breaking of chemical bonds is triggered by dissociative electron attachment (DEA), that is, the capture of the incident electron and the formation of temporary negative ion states [1,2,3]. One of the approaches largely used toward a deeper understanding of the radiation damage to DNA is through modeling of DEA with its basic constituents (nucleotide bases, sugar and other subunits). We have tried to simplify this approach and attempt to make it comprehensible at a more fundamental level by looking at even simple molecules. Studies involving organic systems such as carboxylic acids, alcohols and simple ¯ve-membered heterocyclic compounds are taken as starting points for these understanding. In the present study we investigate the role played by elastic scattering and electronic excitation of molecules on electron-driven chemical processes. Special attention is focused on the analysis of the in°uence of polarization and multichannel coupling e®ects on the magnitude of elastic and electronically inelastic cross-sections. Our aim is also to investigate the existence of resonances in the elastic and electronically inelastic channels as well as to characterize them with respect to its type (shape, core-excited or Feshbach), symmetry and position. The relevance of these issues is evaluated within the context of possible applications for the modeling of discharge environments and implications in the understanding of mutagenic rupture of DNA chains. The scattering calculations were carried out with the Schwinger multichannel method (SMC) [4] and its implementation with pseudopotentials (SMCPP) [5] at di®erent levels of approximation for impact energies ranging from 0.5 eV to 30 eV. References [1] B. Boudai®a, P. Cloutier, D. Hunting, M. A. Huels and L. Sanche, Science 287, 1658 (2000). [2] X. Pan, P. Cloutier, D. Hunting and L. Sanche, Phys. Rev. Lett. 90, 208102 (2003). [3] F. Martin, P. D. Burrow, Z. Cai, P. Cloutier, D. Hunting and L. Sanche, Phys. Rev. Lett. 93, 068101 (2004). [4] K. Takatsuka and V. McKoy, Phys. Rev. A 24, 2437 (1981); ibid. Phys. Rev. A 30, 1734 (1984). [5] M. H. F. Bettega, L. G. Ferreira and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the control of Au nanoparticle (NP) formation by using shaped 30 fs pulses, in a solution containing HAuCl4 and chitosan. By using a sinusoidal spectral phase, a periodic train of pulses is generated. When the period of the pulse train matches certain Raman resonances of chitosan, the reducing agent of the process, an enhancement of the Au NP formation is observed. Theoretical quantum chemical calculations indicate that the outer groups of the chitosan are mostly influenced by low Raman frequencies, which is in reasonably agreement with the experimental data and indicates an enhancement in the Au NP formation as the pulse train period increases (low frequency).