24 resultados para Pulsed Dielectrick Barrier Discharge
Resumo:
Poly(3-hydroxybutyrate) (PHB) biosynthesis from soybean oil by Cupriavidus necator was studied using a bench scale bioreactor. The highest cell concentration (83 g l(-1)) was achieved using soybean oil at 40 g l(-1) and a pulse of the same concentration. The PHB content was 81% (w/w), PHB productivity was 2.5 g l(-1) h(-1), and the calculated Y-p/s value was 0.85 g g(-1). Growth limitation and the onset of PHB biosynthesis took place due to exhaustion of P, and probably also Cu, Ca, and Fe.
Resumo:
We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the DPP approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of Li-7 followed by the breakup of Li-6.
Resumo:
In a homemade UV-Ozone generator, different ignition tubes extracted from HID mercury vapor lamps were investigated, namely: 80, 125, 250 and 400 watts. The performance of the generator in function of the type of the ignition lamp was monitored by the measurements of the ozone concentration and the temperature increment. The results have shown that the 400 W set up presented the highest ozone production, which was used in the treatment of indium tin oxide (ITO) films. Polymer light emitting diodes were assembled using ITO films, treated for 10, 20 and 30 min, as an anode. The overall results indicate improvement of the threshold voltage (reduction) and electroluminescence of these devices.
Resumo:
In this this study, glycerol content and its incorporation method on tensile and barrier properties of biodegradable films (BF) based on cassava starch were analyzed. ANOVA showed that the glycerol incorporation method did not influence the results (P > 0.05), however the glycerol content influenced significantly the tensile and barrier properties of the films (P < 0.05). Films prepared with lower glycerol content presented better tensile and barrier properties than films with higher content. Films were then prepared with addition of clay nanoparticles and their tensile and barrier properties and glass transition temperature were measured. ANOVA indicated that both glycerol and clay nanoparticles influenced significantly the tensile and barrier properties (P < 0.05), diminishing film permeability when clay nanoparticles were present, while the glass transition temperature was not influenced (P > 0.05). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background Atopic dermatitis (AD) is a chronic dermatosis, predominant in childhood, characterized by pruritus and eczematous-type lesions with xerosis as the prominent clinical sign. Objectives To analyze the correlation between biophysical measurements of skin barrier function and other assessment criteria of clinical severity according to Rajka and Langelands criteria. Methods Biophysical measurements [transepidermal water loss (TEWL) and corneometry] were obtained from 120 patients with the diagnosis of AD. Serum levels of IgE were also evaluated. Results A significant correlation between corneometry, TEWL, and clinical severity of AD was found. Data showed an inverse correlation between corneometry, TEWL, and AD severity, and a significant difference (P < 0.001) between mean of corneometry and TEWL and AD severity (mild, moderate, and severe). As for IgE levels, corneometry had significant negative correlation, in contrast with TEWL, which showed a significant positive correlation (P < 0.001). Conclusion Biophysical measurements of skin barrier in non-lesional skin of AD may work as an evaluation factor for AD severity.
Resumo:
Abstract Background While it is well known that bradykinin B2 agonists increase plasma protein extravasation (PPE) in brain tumors, the bradykinin B1 agonists tested thus far are unable to produce this effect. Here we examine the effect of the selective B1 agonist bradykinin (BK) Sar-[D-Phe8]des-Arg9BK (SAR), a compound resistant to enzymatic degradation with prolonged activity on PPE in the blood circulation in the C6 rat glioma model. Results SAR administration significantly enhanced PPE in C6 rat brain glioma compared to saline or BK (p < 0.01). Pre-administration of the bradykinin B1 antagonist [Leu8]-des-Arg (100 nmol/Kg) blocked the SAR-induced PPE in the tumor area. Conclusions Our data suggest that the B1 receptor modulates PPE in the blood tumor barrier of C6 glioma. A possible role for the use of SAR in the chemotherapy of gliomas deserves further study.
Resumo:
Blood-brain barrier (BBB) permeation is an essential property for drugs that act in the central nervous system (CNS) for the treatment of human diseases, such as epilepsy, depression, Alzheimer's disease, Parkinson disease, schizophrenia, among others. In the present work, quantitative structure-property relationship (QSPR) studies were conducted for the development and validation of in silico models for the prediction of BBB permeation. The data set used has substantial chemical diversity and a relatively wide distribution of property values. The generated QSPR models showed good statistical parameters and were successfully employed for the prediction of a test set containing 48 compounds. The predictive models presented herein are useful in the identification, selection and design of new drug candidates having improved pharmacokinetic properties.
Resumo:
More than 30% of Buccella peruviana (D'Orbigny), Globocassidulina crassa porrecta (Earland & Heron-Allen), Cibicides mackannai (Galloway & Wissler) and C. refulgens (Montfort) indicate the presence of cold Sub Antarctic Shelf Water in winter, from 33.5 to 38.3º S, deeper than 100 m, in the southern part of the study area. In summer, the abundance of this association decreases to less than 15% around 37.5-38.9º S where two species (Globocassidulina subglobosa (Brady), Uvigerina peregrina (Cushman) take over. G. subglobosa, U. peregrina, and Hanzawaia boueana (D'Orbigny) are found at 27-33º S in both seasons in less than 55 m deep in the northern part, and are linked with warm Subtropical Shelf Water and Tropical Water. Freshwater influence was signalized by high silicate concentration and by the presence of Pseudononion atlanticum (Cushman), Bolivina striatula (Cushman), Buliminella elegantissima (D'Orbigny), Bulimina elongata (D'Orbigny), Elphidium excavatum (Terquem), E. poeyanum (D'Orbigny), Ammobaculites exiguus (Cushman & Brönnimann), Arenoparrella mexicana (Kornfeld), Gaudryina exillis (Cushman & Brönnimann), Textularia earlandi (Parker) and thecamoebians in four sectors of the shelf. The presence of Bulimina marginata (D'Orbigny) between 34.1-32.8º S in the winter and 34.2-32.7º S in the summer indicates that the influence of the Subtropical Shelf Front on the sediment does not change seasonally, otherwise, the presence of Angulogerina angulosa (Williamson) in the winter, only in Mar del Plata (38.9º S), show that Malvinas currents are not influencing the sediment in the summer.
Resumo:
Tantalum coatings are of particular interest today as promising candidates to replace potentially hazardous electrodeposited chromium coatings for tribological and corrosion resistant applications, such as the internal lining on large-caliber gun barrels. Tantalum coatings have two crystalline phases, α-Ta (body-centered-cubic) and β-Ta (metastable tetragonal) that exhibit relatively different properties. Alpha-Ta is typically preferred for wear and corrosion resistant applications and unfortunately, is very difficult to deposit without the assistance of substrate heating or post-annealing treatments. Furthermore, there is no general consensus on the mechanism which causes α or β to form or if there is a phase transition or transformation from β → α during coating deposition. In this study, modulated pulsed power (MPP) magnetron sputtering was used to deposit tantalum coatings with thicknesses between 2 and 20 μm without external substrate heating. The MPP Ta coatings showed good adhesion and low residual stress. This study shows there is an abrupt β → α phase transition when the coating is 5–7 μm thick and not a total phase transformation. Thermocouple measurements reveal substrate temperature increases as a function of deposition time until reaching a saturation temperature of ~ 388 °C. The importance of substrate temperature evolution on the β → α phase transition is also explained.