20 resultados para Ordinary and partial differential equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study baryon asymmetry generation originated from the leptogenesis in the presence of hypermagnetic fields in the early Universe plasma before the electroweak phase I ransition (EWPT). For the simplest Chern-Simons (CS) wave configuration of hypermagnetic field we find the baryon asymmetry growth when the hypermagnetic field value changes due to alpha(2)-dynamo and the lepton asymmetry rises due to the Abelian anomaly. We solve the corresponding integro-differential equations for the lepton asymmetries describing such selfconsistent dynamics for lepto- and baryogenesis in the two scenarios: (i) when a primordial lepton asymmetry sits in right electrons e(R); and (ii) when, in addition to e(R), a left lepton asyninwtty for e(L) and v(eL) at due to chirality flip reactions provided by in Iiigg,s decays at the temperatures, T < T-RL similar to 10 TeV. We find that the baryon asymmetry of the Universe (BAU) rises very fast through such leptogenesis, especially, in strong hypermagnetic fields. Varying (decreasing) the CS wave number parameter k(0) < 10(-7) T-EW one can recover the observable value of BAU, eta(B) similar to 10(-9), where k(0) = 10(-7) T-EW corresponds to the ataxinittat value for CS wave number surviving ohmic dissipation of hypermagnetic field. In the scenario (ii) one predicts the essential difference of the lepton numbers of right- and left electrons at EWPT time, L-eR - L-eL similar to (mu(eR) / mu(eL))/T-EW = Delta mu/T-EW similar or equal to 10(-5) that can be used as an initial condition for chiral asymmetry after EWPT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695345]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Chafee-Infante equation is one of the canonical infinite-dimensional dynamical systems for which a complete description of the global attractor is available. In this paper we study the structure of the pullback attractor for a non-autonomous version of this equation, u(t) = u(xx) + lambda(xx) - lambda u beta(t)u(3), and investigate the bifurcations that this attractor undergoes as A is varied. We are able to describe these in some detail, despite the fact that our model is truly non-autonomous; i.e., we do not restrict to 'small perturbations' of the autonomous case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reaction-diffusion equation with variable diffusivity and non-linear flux boundary condition is considered. The goal is to give sufficient conditions on the diffusivity function for nonexistence and also for existence of nonconstant stable stationary solutions. Applications are given for the main result of nonexistence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the differentiability of the principal eigenvalue lambda = lambda(1)(Gamma) to the localized Steklov problem -Delta u + qu = 0 in Omega, partial derivative u/partial derivative nu = lambda chi(Gamma)(x)u on partial derivative Omega, where Gamma subset of partial derivative Omega is a smooth subdomain of partial derivative Omega and chi(Gamma) is its characteristic function relative to partial derivative Omega, is shown. As a key point, the flux subdomain Gamma is regarded here as the variable with respect to which such differentiation is performed. An explicit formula for the derivative of lambda(1) (Gamma) with respect to Gamma is obtained. The lack of regularity up to the boundary of the first derivative of the principal eigenfunctions is a further intrinsic feature of the problem. Therefore, the whole analysis must be done in the weak sense of H(1)(Omega). The study is of interest in mathematical models in morphogenesis. (C) 2011 Elsevier Inc. All rights reserved.