29 resultados para Modulated Temperature Differential Scanning Calorimetry
Resumo:
This work aimed at evaluating the spray congealing method for the production of microparticles of carbamazepine combined with a polyoxylglyceride carrier. In addition, the influence of the spray congealing conditions on the improvement of drug solubility was investigated using a three-factor, three-level Box-Behnken design. The factors studied were the cooling air flow rate, atomizing pressure, and molten dispersion feed rate. Dependent variables were the yield, solubility, encapsulation efficiency, particle size, water activity, and flow properties. Statistical analysis showed that only the yield was affected by the factors studied. The characteristics of the microparticles were evaluated using X-ray powder diffraction, scanning electron microscopy, differential scanning calorimetry, and hot-stage microscopy. The results showed a spherical morphology and changes in the crystalline state of the drug. The microparticles were obtained with good yields and encapsulation efficiencies, which ranged from 50 to 80% and 99.5 to 112%, respectively. The average size of the microparticles ranged from 17.7 to 39.4 mu m, the water activities were always below 0.5, and flowability was good to moderate. Both the solubility and dissolution rate of carbamazepine from the spray congealed microparticles were remarkably improved. The carbamazepine solubility showed a threefold increase and dissolution profile showed a twofold increase after 60 min compared to the raw drug. The Box-Behnken fractional factorial design proved to be a powerful tool to identify the best conditions for the manufacture of solid dispersion microparticles by spray congealing.
Resumo:
The ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [C4C1C1C1N][Tf2N], is a glass-forming liquid that exhibits partial crystallization depending on the cooling rate. Differential scanning calorimetry (DSC) indicates crystallization at T-c = 227 K, melting at T-m = 258 K, glass transition at T-g similar to 191 K, and also cold crystallization at T-cc similar to 219 K. Raman spectroscopy shows that the crystalline structure obtained by slow cooling is formed with [Tf2N](-) in cisoid conformation, whereas [Tf2N](-) in transoid conformation results from fast cooling. No preferred conformation of the butyl chain of the [C4C1C1C1N](+) cation is favored by slow or fast cooling of [C4C1C1C1N][Tf2N]. Low-frequency Raman spectroscopy shows that crystalline domains developing in the supercooled liquid result in a glacial state made of a mixture of crystallites and amorphous phase. However, these crystalline structures obtained by slow cooling or cold crystallization are not the same because anion-cation interactions promote local structures with distinct conformations of the [Tf2N](-) anion.
Resumo:
Solid-state characterization of crystalline drugs is an important pre-formulation step for the development and design of solid dosage forms, such as pellets and tablets. In this study, phase transition and dehydration processes of nevirapine have been studied by differential scanning calorimetry and thermogravimetry differential thermal analysis to overcome the problems of drug formulation, namely poor solubility and poor content uniformity. Phase solubility studies elucidated the mechanism of enhanced nevirapine solubility.
Resumo:
This study used TG, DSC, and SDS-PAGE techniques to study protein isolates (PIs) in the powder form obtained from lupin seeds flour Lupinus albus. Different methods of preparing PIs were tested, resulting in final products that were different only in relation to the yield and protein content. The results of the protein analysis by SDS-PAGE showed that the same protein fractions were present in the lupin seeds and in the obtained PIs. This result shows that the process of extraction was not damaging to the composition of the original protein. On the other hand, the results of the thermal analysis (DSC and TG-DTG curves) obtained for the different PIs, led to the detection of changes in the protein conformation through the Delta H values, which in general decreased with increasing values of pH and ionic strength in the experimental conditions of extraction.
Resumo:
Solid lipid nanoparticles (SLN) without drug and SLN loaded with chloroaluminum phthalocyanine (AlClPc) were prepared by solvent diffusion method in aqueous system and characterized by thermal analyses and X-ray diffraction (XRD) in this study. Determination of particle size, zeta potential (ZP), and encapsulation efficiency were also evaluated. SLN containing AlClPc of nanometer size with high encapsulation efficiency and ZP were obtained. The results indicated that the size of SLN loaded with AlClPc is larger than that of the inert particle, but ZP is not changed significantly with incorporation of the drug. In differential scanning calorimetry (DSC) curves, it was observed that the melting point of stearic acid (SA) isolated and in SLN occurred at 55 and 64 degrees C, respectively, suggesting the presence of different polymorphs. DSC also shows that the crystallinity state of SLN was much less than that of SA isolated. The incorporation of drug in SLN may have been favored by this lower crystallinity degree of the samples. XRD techniques corroborated with the thermal analytic techniques, suggesting the polymorphic modifications of stearic acid.
Resumo:
This paper reports on the advancement of magnetic ionic liquids (MILs) as stable dispersions of surface-modified gamma-Fe2O3, Fe3O4, and CoFe2O4 magnetic nanoparticles (MNPs) in a hydrophobic ionic liquid, 1-n-butyl 3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2). The MNPs were obtained via coprecipitation and were characterized using powder X-ray diffraction, transmission electron microscopy, Raman spectroscopy and Fourier transform near-infrared (FT-NIR) spectroscopy, and magnetic measurements. The surface-modified MNPs (SM-MNPs) were obtained via the silanization of the MNPs with the aid of 1-butyl-3[3-(trimethoxysilyl)propyl]imidazolium chloride (BMSPI.Cl). The SM-MNPs were characterized by Raman spectroscopy and Fourier trail: form infrared attenuated total reflectance (FTIR-ATR) spectroscopy and by magnetic measurements. The FTIR-ATR spectra of the SM-MNPs exhibited characteristic absorptions of the imidazolium and those of the Fe-O-Si-C moieties, confirming the presence of BMSPI.Cl on the MNP surface. Thermogravimetric analysis (TGA) showed that the SM-MNPs were modified by at least one BMSPI.Cl monolayer. The MILs were characterized using Raman spectroscopy, differential scanning calorimetry (DSC), and magnetic measurements. The Raman and DSC results indicated an interaction between the SM-MNPs and the IL. This interaction promotes the formation of a supramolecular structure close to the MNP surface that mimics the IL structure and is responsible for the stability of the MIL. Magnetic measurements of the MILs indicated no hysteresis. Superparamagnetic behavior and a saturation magnetization of similar to 22 emu/g could be inferred from the magnetic measurements of a sample containing 50% w/w gamma-Fe2O3 SM-MNP/BMI-NTf2.
Resumo:
Polymers from natural sources are particularly useful as biomaterials for medical devices applications. In this study, the results of characterization of a gelatin network electrolyte doped with europium triflate (Eu(CF3SO3)(3)) are described. The unusual electronic properties of the trivalent lanthanide ions make them well suited as luminescent reporter groups, with many applications in biotechnology. Samples of solvent-free electrolytes were prepared with a range of guest salt concentration. Materials based on Eu(CF3SO3)(3) were obtained as mechanically robust, flexible, transparent, and completely amorphous films. Samples were characterized by thermal analysis (thermo-gravimetry analysis (TGA) and differential scanning calorimetry (DSC), electrochemical stability, scanning electronmicroscopy (SEM), and photoluminescence spectroscopy.
Resumo:
A delivery system containing polymeric (Eudragit) nanoparticles has been developed for encapsulation and controlled release of bioactive flavonoids (quercetin). Nanoparticles were fabricated using a solvent displacement method. Particle size, morphology, and charge were measured by light scattering, electron microscopy and zeta-potential. Encapsulation efficiency (EE) and release profiles were determined using electrochemical methods. Molecular interactions within the particle matrix were characterized by X-ray diffraction, differential scanning calorimetry, and infrared spectroscopy. Antioxidant properties of free and encapsulated quercetin were analyzed by TBARS and fluorescence spectroscopy. Bioaccessibility of quercetin was evaluated using an in vitro digestion model. Relatively small (d a parts per thousand aEuro parts per thousand 370 nm) anionic polymeric nanoparticles were formed containing quercetin in a non-crystalline form (EE a parts per thousand aEuro parts per thousand 67 %). The main interaction between quercetin and Eudragit was hydrogen bonding. Encapsulated quercetin remained stable during 6 months storage and maintained its antioxidant activity. Quercetin bioaccessibility within simulated small intestinal conditions was improved by encapsulation. The knowledge obtained from this study will facilitate the rational design and fabrication of polymeric nanoparticles as oral delivery systems for encapsulation, protection, and release of bioactive compounds.
Resumo:
Some properties of canna (Canna indica L.) and bore (Alocasia macrorrhiza) starches were evaluated and compared using cassava starch (Manihot esculenta Crantz) as a reference. Proximate analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and viscosity measurements were performed. Canna and bore starches showed a similar degree of purity as that of the cassava starch. Canna starch exhibited higher thermal stability and viscosity of solution values than those of bore and cassava starches. XRD spectra showed that canna starch crystallizes as a B-type structure; however, bore and cassava starches crystallize as an A-type structure. Results proved that canna and bore starches are promising bio(materials), obtained from unconventional sources, to be used for industrial applications, as their physicochemical properties are similar to those of cassava starch, which it is known has potential applications in this area.
Resumo:
Active pharmaceutical ingredients have very strict quality requirements; minor changes in the physical and chemical properties of pharmaceuticals can adversely affect the dissolution rate and therefore the bioavailability of a given drug. Accordingly, the aim of the present study was to investigate the effect of spray drying on the physical and in vitro dissolution properties of four different active pharmaceutical ingredients, namely carbamazepine, indomethacin, piroxicam, and nifedipine. Each drug was dispersed in a solution of ethanol and water (70:30) and subjected to single-step spray drying using similar operational conditions. A complete characterization of the spray-dried drugs was performed via differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), particle size distribution analysis, solubility analysis, and an in vitro dissolution study. The results from the thermal analysis and X-ray diffraction showed that, except for carbamazepine, no chemical modifications occurred as a result of spray drying. Moreover, the particle size distribution of all the spray-dried drugs significantly decreased. In addition, SEM images showed that most of the particles had an irregular shape. There was no significant improvement in the solubility of the spray-dried drugs compared with the unprocessed compounds; however, in general, the dissolution rates of the spray-dried drugs showed a remarkable improvement over their non-spray-dried counterparts. Therefore, the results from this study demonstrate that a single spray-drying step may lead to changes in the physical properties and dissolution characteristics of drugs and thus improve their therapeutic action.
Resumo:
A commercial casein hydrolysate was microencapsulated in liposomes produced with non-purified soy lecithin, cryoprotected with two different disaccharides and lyophilized. The encapsulation efficiency of casein hydrolysate ranged from 30 to 40%. The powders were analyzed by differential scanning calorimetry (DSC), scanning electron micrography (SEM), infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). DSC data revealed the presence of an exothermal transition in empty lyophilized liposomes, which was ascribed to the presence of a quasicrystalline lamellar phase (intermediary characteristics between the Lβ and Lc phases). The addition of peptides to the liposomal system caused the disappearance of this exothermic phenomenon, as they were located in the polar headgroup portion of the bilayer, causing disorder and preventing the formation of the quasicrystalline phase. Infrared data indicated the presence of the peptides in the lyophilized formulations and showed that the cryoprotectants interacted effectively with the polar heads of phospholipids in the bilayer.
Resumo:
A combination of an extension of the topological instability "λ criterion" and the "average electronegativity" has been recently reported in the literature to predict compositions with high glass-forming ability (GFA). In the present work, both criteria have been applied to select the Ni61.0Nb36.0B3 alloy with a high glass-forming ability. Ingots were prepared by arc-melting and were used to produce ribbons processed by the melt-spinning technique further characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The Ni61.0Nb36.0B3 alloy revealed a complete amorphization and supercooled liquid region ΔTx = 68 K. In addition, wedge-shaped samples were prepared using copper mold casting in order to determine the critical thickness for amorphous formation. Scanning electron microscopy (SEM) revealed that fully amorphous samples could be obtained, reaching up to ~800 µm in thickness.
Resumo:
Oligonucleotides have been extensively used in basic research of gene expression and function, vaccine design, and allergy and cancer therapy. Several oligonucleotide-based formulations have reached the clinical trial phase and one is already on the market. All these applications, however, are dependent on suitable carriers that protect oligonucleotides against degradation and improve their capture by target cells. The cationic lipid diC14-amidine efficiently delivers nucleic acids to mammalian cells. It was recently shown that diC14-amidine bilayers present an interdigitated phase which strongly correlates with a potent fusogenic activity at low temperatures. Interdigitated phases correspond to very ordered gel phases where the two bilayer leaflets are merged; they usually result from perturbations at the interfacial region such as modifications of the polar headgroup area or dehydration of the bilayer. Interdigitation has been described for asymmetric lipids or mixed-chain lipids of different chain lengths and for lipids with large effective headgroup sizes. It has also been described for symmetric lipids under pressure modifications or in the presence of alcohol, glycerol, acetonitrile, polymyxin B, or ions like thiocyanate. Surprisingly, the role of polyelectrolytes on membrane interdigitation has been only poorly investigated. In the present work, we use dynamic light scattering (DLS), differential scanning calorimetry (DSC), and electron spin resonance (ESR) to explore the effect of a small single-stranded oligonucleotide (ODN) polyelectrolyte on the structure and colloid stability of interdigitated diC14-amidine membranes.
Resumo:
5E-Phenylethenylbenzofuroxan (5PhEBfx) was reported as an excellent anti-Chagas drug candidate. However, its oral bioavailability was affected by the crystallization process. Two samples exhibiting variable in vivo activity was investigated: a thin yellow powder (5PhEBfx-Y) and orange needles (5PhEBfx-O). X-ray powder diffraction, differential scanning calorimetry, vibrational spectroscopy, optical and electron scanning microscopies were applied to investigate both solid forms in order to correlate the solid-state properties with the variable bioavailability of 5PhEBfx. It was observed that 5PhEBfx-Y have a better solubility and consequently higher bioavailability when compared with 5PhEBfx-O. This result suggests that the difference of activity between these two 5E-Phenylethenylbenzofuroxanes could be associated with the solid forms, which also cause the coloration variation.