19 resultados para Magnetic thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of terbium (Tb) doping on the photoluminescence (PL) of crystalline aluminum nitride (c-AlN) and amorphous hydrogenated silicon carbide (a-SiC:H) thin films has been investigated for different Tb atomic concentrations. The samples were prepared by DC and RF magnetron reactive sputtering techniques covering the concentration range of Tb from 0.5 to 11 at.%. The Tb-related light emission versus the Tb concentration is reported for annealing temperatures of 450 °C, 750 °C and 1000 °C. In the low concentration region the intensity exhibits a linear increase and its slope is enhanced with the annealing temperature giving an activation energy of 0.106 eV in an Arrhenius plot. In the high concentration region an exponential decay is recorded which is almost independent on the host material, its structure and the annealing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the magnetic and transport properties of nanoscaled Fe3O4 films obtained from Chemical Vapor Deposition (CVD) technique using [(FeFe2III)-Fe-II(OBut)(8)] and [Fe-2(III)(OBut)(6)] precursors. Samples were deposited on different substrates (i.e., MgO (001), MgAl2O4 (001) and Al2O3 (0001)) with thicknesses varying from 50 to 350 nm. Atomic Force Microscopy analysis indicated a granular nature of the samples, irrespective of the synthesis conditions (precursor and deposition temperature, T-pre) and substrate. Despite the similar morphology of the films, magnetic and transport properties were found to depend on the precursor used for deposition. Using [(FeFe2III)-Fe-II(OBut)(8)] as precursor resulted in lower resistivity, higher M-S and a sharper magnetization decrease at the Verwey transition (T-V). The temperature dependence of resistivity was found to depend on the precursor and T-pre. We found that the transport is dominated by the density of antiferromagnetic antiphase boundaries (AF-APB's) when [(FeFe2III)-Fe-II(OBut)(8)] precursor and T-pre = 363 K are used. On the other hand, grain boundary-scattering seems to be the main mechanism when [Fe-2(III)(OBut)(6)] is used. The Magnetoresistance (MR(H)) displayed an approximate linear behavior in the high field regime (H > 796 kA/m), with a maximum value at room-temperature of similar to 2-3 % for H = 1592 kA/m, irrespective from the transport mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present ab-initio calculations of seven digital magnetic heterostructures, GaN delta-doped with V, Cr, Mn, Fe, Co, Ni, and Cu, forming two-dimensional systems. Only GaN delta-doped with V or Cr present a ferromagnetic ground state with high Curie temperatures. For both, to better describe the electronic properties, we used the GGA-1/2 approach. The ground state of GaN/Cr resulted in a two dimensional half-metal, with 100% spin polarization. For GaN/V, we obtained an insulating state: integer magnetic moment of 2.0 mu(B), a minority spin gap of 3.0 eV close to the gap of GaN, but a majority spin gap of 0.34 eV. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751285]