37 resultados para Inorganic UV filter
Resumo:
The sugarcane is a culture of great importance for the Brazilian agriculture. Every year this culture consumes great amounts of nitrogen and phosphate fertilizers. However, the use of plant growth-promoting bacteria can reduce the use of the chemical fertilizers, contributing to the economy and the environment conservation. So, the goal of this study was to select sugarcane-associated diazotrophic bacteria able to solubilize inorganic phosphate and to evaluate the genetic diversity of these bacteria. A total of 68 diazotrophic bacteria, leaf and root endophytic and rizoplane, of three sugarcane varieties. The selection of inorganic phosphate solubilizing diazotrophic bacteria was assayed by the solubilization index (SI) in solid medium containing insoluble phosphate. The genetic variability was analyzed by the BOX-PCR technique. The results showed that 74% of the diazotrophic strains were able to solubilize inorganic phosphate, presenting classes of different SI. The results showed that the vegetal tissue and the genotype plant influenced in the interaction between phosphate solubilizing diazotrophic bacteria and sugarcane plants. BOX-PCR revealed high genetic variability among the strains analyzed. So, sugarcane-associated diazotrophic bacteria express the capacity to solubilize inorganic phosphate and they present high genetic diversity.
Resumo:
The monodentate cis-[Ru(phen)(2)(hist)(2)](2+) 1R and the bidentate cis-[Ru(phen)(2)(hist)](2+) 2A complexes were prepared and characterized using spectroscopic (H-1, (H-1-H-1) COSY and (H-1-C-13) HSQC NMR, UV-vis, luminescence) techniques. The complexes presented absorption and emission in the visible region, as well as a tri-exponential emission decay. The complexes are soluble in aqueous and non-aqueous solution with solubility in a buffer solution of pH 7.4 of 1.14 x 10(-3) mol L-1 for (1R + 2A) and 6.43 x 10(-4) mol L-1 for 2A and lipophilicity measured in an aqueous-octanol solution of -1.14 and -0.96, respectively. Photolysis in the visible region in CH3CN converted the starting complexes into cis-[Ru(phen)(2)(CH3CN)(2)](2+). Histamine photorelease was also observed in pure water and in the presence of BSA (1.0 x 10(-6) mol L-1). The bidentate coordination of the histamine to the ruthenium center in relation to the monodentate coordination increased the photosubstitution quantum yield by a factor of 3. Pharmacological studies showed that the complexes present a moderate inhibition of AChE with an IC50 of 21 mu mol L-1 (referred to risvagtini, IC50 181 mu mol L-1 and galantamine IC50 0.006 mu mol L-1) with no appreciable cytotoxicity toward to the HeLa cells (50% cell viability at 925 mu mol L-1). Cell uptake of the complexes into HeLa cells was detected by fluorescence confocal microscopy. Overall, the observation of a luminescent complex that penetrates the cell wall and has low cytotoxicity, but is reactive photochemically, releasing histamine when irradiated with visible light, are interesting features for application of these complexes as phototherapeutic agents.
Resumo:
Synthesis, characterization, DFT simulation and biological assays of two new metal complexes of 2-(2-thienyl)benzothiazole - BTT are reported. The complexes [Ag(BTT)(2)NO3] - AgBTT2 and [Au(BTT)Cl]center dot 1/2H(2)O - AuBTT were obtained by mixing the ligand with silver (I) nitrate or gold(I) chloride in methanolic solution. Characterization of the complexes were based on elemental (C, H, N and S), thermal (TG-DTA) analysis, C-13 and H-1 NMR, FT-IR and UV-Vis spectroscopic measurements, as well as the X-ray structure determination for AgBTT2. Spectroscopic data predicted by DFT calculations were in agreement with the experimental data for both complexes. The ligand BTT was synthesized by the condensation of 2-thiophenecarboxaldehyde and 2-aminothiophenol in a microwave furnace. AgBTT2 has a monomeric structure. Both complexes show a good activity against Mycobacterium tuberculosis. Free BIT shows low antitubercular activity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The impact of pyretroids, their by-products and degradation products on humans and the environment is recognized as a serious problem. Despite several studies regarding esfenvalerate toxicity and its detection in water and sediments, there is still a lack of information about its degradation intermediates and by-products in water. In this work, an HPLC method was developed to follow up the degradation of esfenvalerate and to detect the intermediates and by-products formed during the chemical degradation process. The chemical degradation was performed using an esfenvalerate suspension and different concentrations of hydrogen peroxide, temperatures, and pH. The reaction was monitored for 24 hr, and during the kinetic experiments, samples were collected at several reaction times and analyzed by HPLC-UV-PAD. In the degradation process, eleven different compounds (intermediate and by-products) were detected, among them the metabolites 3-phenoxybenzoic acid and 3-phenoxybenzaldehyde. HPLC-UV-PAD proved to be a valuable analytical technique for the rapid and reliable separation and determination of esfenvalerate, its degradation intermediates, and by-products.
Resumo:
This study evaluated bone responses to titanium implants in the presence of an inorganic graft material. The bilateral mandible incisors of 24 rabbits were surgically extracted and one of the exposed sockets, chosen at random, was filled with an inorganic xenogenic bone graft (Gen-ox (R)), whereas the remaining socket was left to heal naturally and served as a control. After 60 days, titanium implants were inserted in the specific areas, and on days 0, 30, 60, and 180 after the implant insertions, six animals of each group were killed. Digital periapical radiography of implant region was obtained and vertical bone height (VBH) and bone density (BD) were evaluated by digital analysis system. In the undecalcified tissue cuts, bone-to-implant contact (BIC) and bone area (BA) within the limits of the implant threads were evaluated and compared statistically by means of two-way ANOVA and Tukey's test (rho < 0.05). No significant differences were detected in VBH and BA, either between groups or between different experimental intervals. The BD was significantly higher in the experimental group than in the control group in all the intervals tested, but there were no significant differences by interval. The BIC was statistically lower in the control group on day 0; however, a significant increase was observed on days 60 and 180 (rho < 0.05). The use of an inorganic xenograft prior to insertion of a titanium implant did not interfere with the course of osseointegration.
Resumo:
Diclofenac sodium (DS) is a non-steroidal anti-inflammatory drug that is widely prescribed for the treatment of rheumatoid arthritis and post-surgery analgesia. The active pharmaceutical ingredient is the anhydrous form; however, it can also exist in hydrate form. In this context, knowing the properties of the solid state is important and relevant in the pharmaceutical area because they have a significant impact on the solubility, bioavailability, and chemical stability of the drugs. In the present study, data from XRPD, FTIR spectroscopy, and thermal analysis were used for the identification and characterization of DS forms (anhydrous and hydrate). An HPLC method was optimized to evaluate the plasma concentration of DS in rabbits. The optimized method exhibited good linearity over the range 0.1-60 mu g/mL with correlation coefficients of >0.9991. The mean recovery was 100%. Precision and accuracy were determined within acceptable limits. Finally, to compare the pharmacological properties of anhydrous and hydrate DS forms, we investigated their effects in the febrile response induced by lipopolysaccharide from E. coli in rabbits. The results show that the antipyretic effect of anhydrous and hydrate DS forms are similar.
Resumo:
Cefadroxil is a semi-synthetic first-generation oral cephalosporin used in the treatment of mild to moderate infections of the respiratory and urinary tracts, skin and soft tissue infections. In this work a simple, rapid, economic and sensitive HPLC-UV method is described for the quantitative determination of cefadroxil in human plasma samples using lamivudine as internal standard. Sample pre-treatment was accomplished through protein precipitation with acetonitrile and chromatographic separation was performed with a mobile phase consisting of a mixture of sodium dihydrogen phosphate monohydrate solution, methanol and acetonitrile in the ratio of 90:8:2 (v/v/v) at a flow rate of 1.0mL/min. The proposed method is linear between 0.4 to 40.0 mu g/mL and its average recovery is 102.21% for cefadroxil and 97.94% for lamivudine. The method is simple, sensitive, reproducible, less time consuming for determination of cefadroxil in human plasma. The method can therefore be recommended for pharmacokinetics studies, including bioavailability and bioequivalence studies.
Resumo:
In a homemade UV-Ozone generator, different ignition tubes extracted from HID mercury vapor lamps were investigated, namely: 80, 125, 250 and 400 watts. The performance of the generator in function of the type of the ignition lamp was monitored by the measurements of the ozone concentration and the temperature increment. The results have shown that the 400 W set up presented the highest ozone production, which was used in the treatment of indium tin oxide (ITO) films. Polymer light emitting diodes were assembled using ITO films, treated for 10, 20 and 30 min, as an anode. The overall results indicate improvement of the threshold voltage (reduction) and electroluminescence of these devices.
Resumo:
Manganese tungstate (MnWO4) nanorods were prepared at room temperature by the co-precipitation method and synthesized after processing in a microwave-hydrothermal (MH) system at 140 degrees C for 6-96 min. These nanorods were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The growth direction, shape and average size distribution of nanorods were observed by means of transmission electron microscopy (TEM) and high resolution TEM (HR-TEM). The optical properties of the nanorods were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy indicate that the MnWO4 precipitate is not a single phase structure while the nanorods synthesized by MH processing have a wolframite-type monoclinic structure without deleterious phases. FT-Raman spectra exhibited the presence of 17 Raman-active modes from 50 to 1,000 cm(-1). TEM and HR-TEM micrographs indicated that the nanorods are aggregated due to surface energy by Van der Waals forces and grow along the [100] direction. UV-vis absorption measurements confirmed non-linear values for the optical band gap (from 3.2 to 2.72 eV), which increased as the MH processing time increased. The structural characterizations indicated that the presence of defects in the MnWO4 precipitate promotes a significant contribution to maximum PL emission, while MnWO4 nanorods obtained by MH processing decrease the PL emission due to the reduction of defects in the lattice.
Resumo:
Photoprotection of the agarophyte red alga Gracilaria tenuistipitata against ultraviolet radiation (UVR) was investigated in algae submitted for 1 week to photosynthetically active radiation (PAR, 260 mu mol photons m(-2) s(-1)) or PAR + UVR (UV-A, 8.13 W m(-2) and UV-B, 0.42 W m(-2)) under different nitrogen concentrations: 0, 0.1, and 0.5 mM of NO3-. Photosynthetic pigments decreased during the time of the experiment mainly under low nitrogen supply and UVR. Incubation under high nitrogen supply (0.5 mM) sustained the photosynthetic levels over time. In contrast, mycosporine-like amino acids (MAAs) increased up to eightfold in the presence of UVR and 0.5 mM NO3-. Under PAR + UVR, maximal quantum yield was positively correlated to MAA abundance, whereas under PAR no correlation was found. The photosynthetic yield of algae cultivated during seven days under PAR + UVR was less affected by a 30-min exposure of high UVR (16 W m(-2)) and fully recovered after transferring to low PAR irradiances, whereas algae kept under PAR were more affected by UV exposure and no full recovery was observed. Growth rates decreased after three days in the presence of UVR and under low nitrate supply. However, these rates were similar when compared with treatments of PAR and PAR + UVR after seven days, with the exception of samples in 0 mM NO3-, indicating that the acclimation after one week's exposure is related to nitrate supply. In conclusion, the lowest negative effect of UVR on photosynthesis and growth rate in high N-supply-grown algae could be explained by the stimulation of photoprotection mechanisms, such as accumulation of MAAs. Photostimulation of MAA accumulation by UVR under high N supply was observed in G. tenuistipitata even after 20 years in culture without the induction of this photomorphogenic light signal.
Resumo:
In this paper, we report our initial research to obtain hexagonal rod-like elongated silver tungstate (alpha-Ag2WO4) microcrystals by different methods [sonochemistry (SC), coprecipitation (CP), and conventional hydrothermal (CH)] and to study their cluster coordination and optical properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier transform infrared (FT-IR), X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopies. The shape and average size of these alpha-Ag2WO4 microcrystals were observed by field-emission scanning electron microscopy (FE-SEM). The optical properties of these microcrystals were investigated by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) measurements. XRD patterns and Rietveld refinement data confirmed that alpha-Ag2WO4 microcrystals have an orthorhombic structure. FT-IR spectra exhibited four IR-active modes in a range from 250 to 1000 cm(-1). XANES spectra at the W L-3-edge showed distorted octahedral [WO6] clusters in the lattice, while EXAFS analyses confirmed that W atoms are coordinated by six O atoms. FE-SEM images suggest that the alpha-Ag2WO4 microcrystals grow by aggregation and the Ostwald ripening process. PL properties of alpha-Ag2WO4 microcrystals decrease with an increase in the optical band-gap values (3.19-3.23 eV). Finally, we observed that large hexagonal rod-like alpha-Ag2WO4 microcrystals prepared by the SC method exhibited a major PL emission intensity relative to alpha-Ag2WO4 microcrystals prepared by the CP and CH methods.
Resumo:
Multivariate analyses of UV-Vis spectral data from cachaca wood extracts provide a simple and robust model to classify aged Brazilian cachacas according to the wood species used in the maturation barrels. The model is based on inspection of 93 extracts of oak and different Brazilian wood species by a non-aged cachaca used as an extraction solvent. Application of PCA (Principal Components Analysis) and HCA (Hierarchical Cluster Analysis) leads to identification of 6 clusters of cachaca wood extracts (amburana, amendoim, balsamo, castanheira, jatoba, and oak). LDA (Linear Discriminant Analysis) affords classification of 10 different wood species used in the cachaca extracts (amburana, amendoim, balsamo, cabreuva-parda, canela-sassafras, castanheira, jatoba, jequitiba-rosa, louro-canela, and oak) with an accuracy ranging from 80% (amendoim and castanheira) to 100% (balsamo and jequitiba-rosa). The methodology provides a low-cost alternative to methods based on liquid chromatography and mass spectrometry to classify cachacas aged in barrels that are composed of different wood species.
Resumo:
The present study was carried out with the objective of evaluating the effects of feeding dairy cows with organic or inorganic sources of zinc (Zn), copper (Cu) and selenium (Se) on blood concentrations of these minerals, blood metabolic profiles, nutrient intake and milk yield and composition. Nineteen Holstein cows were selected and randomly assigned to two groups for receiving organic (n = 9) or inorganic (n = 10) sources of Zn, Cu and Se from 60 days before the expected date of calving to 80 days of lactation. Samples of feed, orts and milk were collected for analysis. Body condition score (BCS) was determined and blood samples were collected for analysis of Zn, Cu and Se concentrations, as well as for metabolic profile. Supplying organic or inorganic sources of Zn, Cu, and Se did not affect dry matter and nutrient intake, blood metabolic profile, milk yield and composition, plasma concentration of these minerals, and BCS or change the BCS in cows from 60 days before the expected date of calving to 80 days of lactation. An effect of time was observed on all feed intake variables, plasma concentrations of Zn and Se, milk yield, milk protein content, BCS and change in BCS.
Resumo:
Two novel dinuclear complexes involving the antihypertensive drug valsartan and copper(II) ion have been prepared in water and DMSO. The complex compositions were determined as: [Cu(vals)(H(2)O)(3)](2)center dot 6H(2)O and [Cu(vals)(H(2)O)(2)DMSO](2)center dot 2H(2)O. They were thoroughly characterized by elemental and thermal analysis, spectrophotometric titrations and UV-visible, diffuse reflectance, FTIR, Raman and EPR spectroscopies. No effect of the ligand on two tested osteoblastic cell lines in culture (one normal MOT3E1 and one tumoral UMR106) was observed in concentrations up to 100 mu M. Higher concentrations of Valsartan are required to induce cytotoxicity in both cell lines. The antiproliferative effect of the tested complex ([Cu(vals) (H(2)O)(3)](2)center dot 6H(2)O) in a dose-response manner, was higher in the UMR106 osteoblastic cell line than that of the MC3T3E1 normal line at concentrations >= 100 mu M. Morphological alterations are in accordance with proliferative observations. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Proton nuclear magnetic resonance (H-1 NMR) spectroscopy for detection of biochemical changes in biological samples is a successful technique. However, the achieved NMR resolution is not sufficiently high when the analysis is performed with intact cells. To improve spectral resolution, high resolution magic angle spinning (HR-MAS) is used and the broad signals are separated by a T-2 filter based on the CPMG pulse sequence. Additionally, HR-MAS experiments with a T-2 filter are preceded by a water suppression procedure. The goal of this work is to demonstrate that the experimental procedures of water suppression and T-2 or diffusing filters are unnecessary steps when the filter diagonalization method (FDM) is used to process the time domain HR-MAS signals. Manipulation of the FDM results, represented as a tabular list of peak positions, widths, amplitudes and phases, allows the removal of water signals without the disturbing overlapping or nearby signals. Additionally, the FDM can also be used for phase correction and noise suppression, and to discriminate between sharp and broad lines. Results demonstrate the applicability of the FDM post-acquisition processing to obtain high quality HR-MAS spectra of heterogeneous biological materials.