29 resultados para GERMANIUM DETECTORS
Resumo:
EVAPORATIVE LIGHT-SCATTERING DETECTOR FOR ANALYSIS OF NATURAL PRODUCTS. The interest in the use of evaporative light scattering detector (ELSD) for the analysis of different classes of natural products has grown over the years. This is because this detector has become an excellent alternative compared to other types of detectors, such as the refractive index detector and the ultraviolet (UV) detector. This review describes the basic principles of ELSD functioning and discusses the advantages and disadvantages in using an ELSD for the analysis of organic compounds. Additionally, an overview, covering the last 23 years, of ELSD applications in natural products analysis (saponins, terpenes, carbohydrates, glycosides, alkaloids, steroids, flavonoids, peptides, polyketides, coumarins and iridoids) is presented and discussed.
Resumo:
The objective of this paper is to show the dependence relationship between the crystallographic orientations upon brittle-to-ductile transition during diamond turning of monocrystalline silicon. Cutting tests were performed using a -5 degrees rake angle round nose diamond tool at different machining scales. At the micrometre level, the feedrate was kept constant at 2.5 micrometres per revolution (mu m/r), and the depth of cut was varied from 1 to 5 mu m. At the submicrometre level, the depth of cut was kept constant at 500 nm and the feedrate varied from 5 to 10 mu m/r. At the micrometre level, the uncut shoulder generated with an interrupted cutting test procedure provided a quantitative measurement of the ductile-to-brittle transition. Results show that the critical chip thickness in silicon for ductile material removal reaches a maximum of 285 nm in the [100] direction and a minimum of 115 nm in the [110] direction, when the depth of cut was 5 mu m. It was found that when a submicrometre depth of cut was applied, microcracks were revealed in the [110] direction, which is the softer direction in silicon. Micro Raman spectroscopy was used to estimate surface residual stress after machining. Compressive residual stress in the range 142 MPa and smooth damage free surface finish was probed in the [100] direction for a depth of cut of 5 mu m, whereas residual stresses in the range 350 MPa and brittle damage was probed in the [110] direction for a depth of cut of 500 nm.
Resumo:
The second Fourier component v(2) of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum (p(T)) of 1-12 GeV/c in Au + Au collisions at root s(NN) = 200 GeV. Previous measurements of this quantity for hadrons with p(T) < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p(T) > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p(T) > 4 GeV/c the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering. However, in the p(T) < 4 GeV/c region dominated by thermal photons, we find a substantial direct-photon v(2) comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region underpredict the observed v(2).
Resumo:
Radiation dose assessment is essential for several medical treatments and diagnostic procedures. In this context, nanotechnology has been used in the development of improved radiation sensors, with higher sensitivity as well as smaller sizes and energy dependence. This paper deals with the synthesis and characterization of gold/alanine nanocomposites with varying mass percentage of gold, for application as radiation sensors. Alanine is an excellent stabilizing agent for gold nanoparticles because the size of the nanoparticles does not augment with increasing mass percentage of gold, as evidenced by UV-vis spectroscopy, dynamic light scattering, and transmission electron microscopy. X-ray diffraction patterns suggest that the alanine crystalline orientation undergoes alterations upon the addition of gold nanoparticles. Fourier transform infrared spectroscopy indicates that there is interaction between the gold nanoparticles and the amine group of the alanine molecules, which may be the reason for the enhanced stability of the nanocomposite. The application of the nanocomposites as radiation detectors was evaluated by the electron spin resonance technique. The sensitivity is improved almost 3 times in the case of the nanocomposite containing 3% (w/w) gold, so it can be easily tuned by changing the amount of gold nanoparticles in the nanocomposites, without the size of the nanoparticles influencing the radiation absorption. In conclusion, the featured properties, such as homogeneity, nanoparticle size stability, and enhanced sensitivity, make these nanocomposites potential candidates for the construction of small-sized radiation sensors with tunable sensitivity for application in several medical procedures.
Resumo:
This communication reports a promising platform for rapid, simple, direct, and ultrasensitive determination of serotonin. The method is related to integration of vertically aligned single-walled carbon nanotubes (SWCNTs) in electrochemical microfluidic devices. The required microfabrication protocol is simple and fast. In addition, the nanomaterial influenced remarkably the obtained limit-of-detection (LOD) values. Our system achieved a LOD of 0.2 nmol L-1 for serotonin, to the best of our knowledge one of the lowest values reported in the literature.
Resumo:
Glasses in the system xGeO(2)-(1-x)NaPO3 (0 <= x <= 0.50) were prepared by conventional melting quenching and characterized by thermal analysis, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and P-31 nuclear magnetic resonance (MAS NMR) techniques. The deconvolution of the latter spectra was aided by homonuclear J-resolved and refocused INADEQUATE techniques. The combined analyses of P-31 MAS NMR and O-1s XPS lineshapes, taking charge and mass balance considerations into account, yield the detailed quantitative speciations of the phosphorus, germanium, and oxygen atoms and their respective connectivities. An internally consistent description is possible without invoking the formation of higher-coordinated germanium species in these glasses, in agreement with experimental evidence in the literature. The structure can be regarded, to a first approximation, as a network consisting of P-(2) and P-(3) tetrahedra linked via four-coordinate germanium. As implied by the appearance of P-(3) units, there is a moderate extent of network modifier sharing between phosphate and germanate network formers, as expressed by the formal melt reaction P-(2) + Ge-(4) -> P-(3) + Ge-(3). The equilibrium constant of this reaction is estimated as K = 0.52 +/- 0.11, indicating a preferential attraction of network modifier by the phosphorus component. These conclusions are qualitatively supported by Raman spectroscopy as well as P-31{Na-23} and P-31{Na-23} rotational echo double resonance (REDOR) NMR results. The combined interpretation of O-1s XPS and P-31 MAS NMR spectra shows further that there are clear deviations from a random connectivity scenario: heteroatomic P-O-Ge linkages are favored over homoatomic P-O-P and Ge-O-Ge linkages.
Resumo:
Measurements of the anisotropy parameter v(2) of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p(T), and transverse kinetic energy KET at midrapidity (vertical bar eta vertical bar < 0.35) in Au + Au collisions at root s(N N) = 200 GeV are presented. Pions and protons are identified up to p(T) = 6 GeV/c, and kaons up to p(T) = 4 GeV/c, by combining information from time-of-flight and aerogel Cerenkov detectors in the PHENIX Experiment. The scaling of v(2) with the number of valence quarks (n(q)) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KET/n(q) in noncentral Au + Au collisions (20-60%), but this scaling remains valid in central collisions (0-10%).
Resumo:
The interest in the use of evaporative light scattering detector (ELSD) for the analysis of different classes of natural products has grown over the years. This is because this detector has become an excellent alternative compared to other types of detectors, such as the refractive index detector and the ultraviolet (UV) detector. This review describes the basic principles of ELSD functioning and discusses the advantages and disadvantages in using an ELSD for the analysis of organic compounds. Additionaly, an overview, covering the last 23 years, of ELSD applications in natural products analysis (saponins, terpenes, carbohydrates, glycosides, alkaloids, steroids, flavonoids, peptides, polyketides, coumarins and iridoids) is presented and discussed.
Resumo:
Observing high-energy gamma-rays from Active Galactic Nuclei (AGN) offers a unique potential to probe extremely tiny values of the intergalactic magnetic field (IGMF), a long standing question of astrophysics, astropa rticle physics and cosmology. Very high energy (VHE) photons from blazars propagating along the line of sight interact with the extragalactic background light (EBL) and produce e + e − pairs. Through inverse-Compton interaction, mainly on the cosmic microwave background (CMB), these pairs generate secondary GeV-TeV compo- nents accompanying the primary VHE signal. Such secondary components would be detected in the gamma-ray range as delayed “pair echos” for very weak IGMF ( B< 10 − 16 G ), while they should result in a spatially extended ga mma-ray emission around the source for higher IGMF values ( B> 10 − 16 G ). Coordinated observations with space (i.e. Fermi) and ground- based gamma-ray instruments, such as the pre sent Cherenkov experiments H.E.S.S., MAGIC and VERITAS, the future Cherenkov Telescope Array (CTA) Observatory, and the wide-field detectors such as HAWC and LHAASO, should allow to analyze and finally detect such echos, extended emission or pair halos, and to further characterize the IGMF.
Resumo:
The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.
Resumo:
Doppler Broadening Spectroscopy of the large Ge crystal of an HPGe detector was perforrned using positrons from pair production of 6.13 MeV ϒ-rays from the 19F(p,αϒ) 16O reaction. Two HPGe detectors facing opposite sides of the Ge crystal acting as target provided both coincidence and singles spectra. Changes in the shape of the annihilation peak were observed when the high voltage applied to the target detector was switched on or off, amounting to somewhat less than 20% when the areas of equivalent energy intervals in the corresponding normalized spectra are compared.
Resumo:
The recent advances and promises in nanoscience and nanotechnology have been focused on hexagonal materials, mainly on carbon-based nanostructures. Recently, new candidates have been raised, where the greatest efforts are devoted to a new hexagonal and buckled material made of silicon, named Silicene. This new material presents an energy gap due to spin-orbit interaction of approximately 1.5 meV, where the measurement of quantum spin Hall effect(QSHE) can be made experimentally. Some investigations also show that the QSHE in 2D low-buckled hexagonal structures of germanium is present. Since the similarities, and at the same time the differences, between Si and Ge, over the years, have motivated a lot of investigations in these materials. In this work we performed systematic investigations on the electronic structure and band topology in both ordered and disordered SixGe1-x alloys monolayer with 2D honeycomb geometry by first-principles calculations. We show that an applied electric field can tune the gap size for both alloys. However, as a function of electric field, the disordered alloy presents a W-shaped behavior, similarly to the pure Si or Ge, whereas for the ordered alloy a V-shaped behavior is observed.
Resumo:
The energetic stability and the electronic properties of vacancies (VX) and antisites (XY) in PbSe and PbTe are investigated. PbSe and PbTe are narrow band gap semiconductors and have the potential to be used in infrared detectors, laser, and diodes. They are also of special interest for thermoelectric devices (TE). The calculations are based in the Density Functional Theory (DFT) and the General Gradient Approximation (GGA) for the exchange-correlation term, as implemented in the VASP code. The core and valence electrons are described by the Projected Augmented Wave (PAW) and the Plane Wave (PW) methods, respectively. The defects are studied in the bulk and nanowire (NW) system. Our results show that intrinsec defects (vacancies and antisites) in PbTe have lower formation energies in the NW as compared to the bulk and present a trend in migrate to the surface of the NW. For the PbSe we obtain similar results when compare the formation energy for the bulk and NW. However, the Pb vacancy and the antisites are more stable in the core of the NW. The intrinsec defects are shallow defects for the bulk system. For both PbSe and PbTe VPb is a shallow acceptor defect and VSe and VT e are shallow donor defects for the PbSe and PbTe, respectively. Similar electronic properties are observed for the antisites. For the Pb in the anion site we obtain an n-type semiconductor for both PbSe and PbTe, SeP b is a p-type for the PbSe, and T eP b is a n-type for PbTe. Due the quantum con¯nement effects present in the NW (the band gap open), these defects have different electronic properties for the NW as compared to the bulk. Now these defects give rise to electronic levels in the band gap of the PbTe NW and the VT e present a metallic character. For the PbSe NW a p-type and a n-type semiconductor is obtained for the VP b and P bSe, respectively. On the other hand, deep electronic levels are present in the band gap for the VSe and SePb. These results show that due an enhanced in the electronic density of states (DOS) near the Fermi energy, the defective PbSe and PbTe are candidates for efficient TE devices.
Resumo:
The observation of ultrahigh energy neutrinos (UHE vs) has become a priority in experimental astroparticle physics. UHE vs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going v) or in the Earth crust (Earth-skimming v), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEs in the data collected with the ground array of the Pierre Auger Observatory.This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE vs in the EeV range and above.