61 resultados para Chagas Disease
Resumo:
Background: Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium. Methods and Results: Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2-6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes. Conclusions: Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC.
Resumo:
OBJECTIVE: Chagas' disease has spread throughout Latin America because of the high rate of migration among these countries. Approximately 30% of Chagas' patients will develop cardiomyopathy, and 10% of these will develop severe cardiac damage leading to heart failure. Beta-blockade improves symptoms and survival in heart failure patients; however, its efficacy has not been well established in Chagas' disease. We evaluated the role of carvedilol in cardiac remodeling and mortality in a Chagas' cardiomyopathy animal model. METHODS: We studied Trypanosoma cruzi infection in 55 Syrian hamsters that were divided into three groups: control (15), infected (20), and infected + carvedilol (20). Animals underwent echocardiography, electrocardiography, and morphometry for collagen evaluation in ventricles stained with picrosirius red. RESULTS: The left ventricular diastolic diameter did not change between groups, although it was slightly larger in infected groups, as was left ventricular systolic diameter. Fractional shortening also did not change between groups, although it was slightly lower in infected groups. Collagen accumulation in the interstitial myocardial space was significantly higher in infected groups and was not attenuated by carvedilol. The same response was observed in the perivascular space. The survival curve showed significantly better survival in the control group compared with the infected groups; but no benefit of carvedilol was observed during the study. However, in the acute phase (up to 100 days of infection), carvedilol did reduce mortality. CONCLUSION: Carvedilol did not attenuate cardiac remodeling or mortality in this model of Chagas' cardiomyopathy. The treatment did improve survival in the acute phase of the disease.
Resumo:
Fogo Selvagem (FS) is an autoimmune bullous disease with pathogenic IgG autoantibodies recognizing desmoglein 1 (Dsg1), a desmosomal glycoprotein. In certain settlements of Brazil, a high prevalence of FS (3%) is reported, suggesting environmental factors as triggers of the autoimmune response. Healthy individuals from endemic areas recognize nonpathogenic epitopes of Dsg1, and exposure to hematophagous insects is a risk factor for FS. Fogo selvagem and Chagas disease share some geographic sites, and anti-Dsg1 has been detected in Chagas patients. Indeterminate Chagas disease was identified in a Brazilian Amerindian population of high risk for FS. In counterpart, none of the FS patients living in the same geographic region showed reactivity against Trypanosoma cruzi. The profile of anti-Dsg1 antibodies showed positive results in 15 of 40 FS sera and in 33 of 150 sera from healthy individuals from endemic FS sites, and no cross-reactivity between Chagas disease and FS was observed.
Resumo:
Tetrahydrofuran lignans represent a well-known group of phenolic compounds capable of acting as antiparasitic agents. In the search for new medicines for the treatment of Chagas disease, one promising compound is grandisin which has shown significant activity on trypomastigote forms of Trypanosoma cruzi. In this work, the in vitro metabolism of grandisin was studied in the pig cecum model and by biomimetic phase I reactions, aiming at an ensuing a preclinical pharmacokinetic investigation. Although grandisin exhibited no metabolization by the pig microbiota, one putative metabolite was formed in a biomimetic model using Jacobsen catalyst. The putative metabolite was tested against T. cruzi revealing loss of activity in comparison to grandisin.
Resumo:
Protozoan parasites cause thousands of deaths each year in developing countries. The genome projects of these parasites opened a new era in the identification of therapeutic targets. However, the putative function could be predicted for fewer than half of the protein-coding genes. In this work, all Trypanosoma cruzi proteins containing predicted transmembrane spans were processed through an automated computational routine and further analyzed in order to assign the most probable function. The analysis consisted of dissecting the whole predicted protein in different regions. More than 5,000 sequences were processed, and the predicted biological functions were grouped into 19 categories according to the hits obtained after analysis. One focus of interest, due to the scarce information available on trypanosomatids, is the proteins involved in signal-transduction processes. In the present work, we identified 54 proteins belonging to this group, which were individually analyzed. The results show that by means of a simple pipeline it was possible to attribute probable functions to sequences annotated as coding for "hypothetical proteins.'' Also, we successfully identified the majority of candidates participating in the signal-transduction pathways in T. cruzi.
Resumo:
Triatoma matogrossensis is a Hemiptera that belongs to the oliveirai complex, a vector of Chagas' disease that feeds on vertebrate blood in all life stages. Hematophagous insects' salivary glands (SGs) produce potent pharmacologic compounds that counteract host hemostasis, including anticlotting, antiplatelet, and vasodilatory molecules. Exposure to T. matogrossensis was also found to be a risk factor associated with the endemic form of the autoimmune skin disease pemphigus foliaceus, which is described in the same regions where Chagas' disease is observed in Brazil. To obtain a further insight into the salivary biochemical and pharmacologic diversity of this kissing bug and to identify possible allergens that might be associated with this autoimmune disease, a cDNA library from its SGs was randomly sequenced. We present the analysis of a set of 2,230 (SG) cDNA sequences, 1,182 of which coded for proteins of a putative secretory nature.
Resumo:
Trypanothione reductase has long been investigated as a promising target for chemotherapeutic intervention in Chagas disease, since it is an enzyme of a unique metabolic pathway that is exclusively present in the pathogen but not in the human host, which has the analog Glutathione reductase. In spite of the present data-set includes a small number of compounds, a combined use of flexible docking, pharmacophore perception, ligand binding site prediction, and Grid-Independent Descriptors GRIND2-based 3D-Quantitative Structure-Activity Relationships (QSAR) procedures allowed us to rationalize the different biological activities of a series of 11 aryl beta-aminocarbonyl derivatives, which are inhibitors of Trypanosoma cruzi trypanothione reductase (TcTR). Three QSAR models were built and validated using different alignments, which are based on docking with the TcTR crystal structure, pharmacophore, and molecular interaction fields. The high statistical significance of the models thus obtained assures the robustness of this second generation of GRIND descriptors here used, which were able to detect the most important residues of such enzyme for binding the aryl beta-aminocarbonyl derivatives, besides to rationalize distances among them. Finally, a revised binding mode has been proposed for our inhibitors and independently supported by the different methodologies here used, allowing further optimization of the lead compounds with such combined structure- and ligand-based approaches in the fight against the Chagas disease.
Resumo:
The Malpighian tubule cell nuclei of male Panstrongylus megistus, a vector of Chagas disease, contain one chromocenter, which is composed solely of the Y chromosome. Considering that different chromosomes contribute to the composition of chromocenters in different triatomini species, the aim of this study was to determine the contribution of AT-, GC-, and methylated cytidine-rich DNA in the chromocenter as well as in euchromatin of Malpighian tubule cell nuclei of P. megistus in comparison with published data for Triatoma infestans. Staining with 4',6-diamidino-2-phenylindole/actinomycin D and chromomycin A(3)/distamycin, immunodetection of 5-methylcytidine and AgNOR test were used. The results revealed AT-rich/GC-poor DNA in the male chromocenter, but equally distributed AT and GC DNA sequences in male and female euchromatin, like in T. infestans. Accumulation of argyrophilic proteins encircling the chromocenter did not always correlate with that of GC-rich DNA. Methylated DNA identified by immunodetection was found sparsely distributed in the euchromatin of both sexes and at some points around the chromocenter edge, but it could not be considered responsible for chromatin condensation in the chromocenter, like in T. infestans. However, unlike in T. infestans, no correlation between the chromocenter AT-rich DNA and nucleolus organizing region (NOR) DNA was found in P. megistus. (c) 2011 Elsevier GmbH. All rights reserved.
Resumo:
This work describes the synthesis of a series of sialylmimetic neoglycoconjugates represented by 1,4-disubstituted 1,2,3-triazole-sialic acid derivatives containing galactose modified at either C-1 or C-6 positions, glucose or gulose at C-3 position, and by the amino acid derivative 1,2,3-triazole fused threonine-3-O-galactose as potential TcTS inhibitors and anti-trypanosomal agents. This series was obtained by Cu(I)-catalysed azide-alkyne cycloaddition reaction ('click chemistry') between the azido-functionalized sugars 1-N(3)-Gal (commercial), 6-N(3)-Gal, 3-N(3)-Glc and 3-N(3)-Gul with the corresponding alkyne-based 2-propynyl-sialic acid, as well as by click chemistry reaction between the amino acid N(3)-ThrOBn with 3-O-propynyl-GalOMe. The 1,2,3-triazole linked sialic acid-6-O-galactose and the sialic acid-galactopyranoside showed high Trypanosoma cruzi trans-sialidase (TcTS) inhibitory activity at 1.0 mM (approx. 90%), whilst only the former displayed relevant trypanocidal activity (IC(50) 260 mu M). These results highlight the 1,2,3-triazole linked sialic acid-6-O-galactose as a prototype for further design of new neoglycoconjugates against Chagas' disease. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Thiosemicarbazones are cruzain inhibitors which have been identified as potential antitrypanosomal agents. In this work, several molecular properties were calculated at the density functional theory (DFT)/B3LYP/6-311G* level for a set of 44 thiosemicarbazones. Unsupervised and supervised pattern recognition techniques (hierarchical cluster analysis, principal component analysis, kth-nearest neighbors, and soft independent modeling by class analogy) were used to obtain structureactivity relationship models, which are able to classify unknown compounds according to their activities. The chemometric analyses performed here revealed that 12 descriptors can be considered responsible for the discrimination between high and low activity compounds. Classification models were validated with an external test set, showing that predictive classifications were achieved with the selected variable set. The results obtained here are in good agreement with previous findings from the literature, suggesting that our models can be useful on further investigations on the molecular determinants for the antichagasic activity. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Chagas' disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-alpha, IFN-gamma, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-gamma were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.
Resumo:
This study presents the electrocardiogram findings from 97 captive tufted capuchin monkeys (Cebus apella) at the Sao Paulo Zoo (Sao Paulo, Brazil) while under ketamine anesthesia. The results did not differ greatly from data of domestic carnivores or other studied primate species. The most common rhythm recorded was normal sinus rhythm, followed by normal sinus rhythm with wandering pacemaker. Electrical axis varied from 0 degrees to -150 degrees but was most commonly between +60 degrees and +90 degrees. QRS complexes were predominantly positive in leads DI, DII, DIII, and AVF. These findings allow for the recognition of abnormal rhythms in these primate species and can contribute to future investigations into the cardiovascular diseases routinely diagnosed in primates and humans.
Resumo:
Different types of shed vesicles as, for example, exosomes, plasma-membrane-derived vesicles or microparticles, are the focus of intense research in view of their potential role in cell cell communication and under the perspective that they might be good tools for immunotherapy, vaccination or diagnostic purposes. This review discusses ways employed by pathogenic trypanosomatids to interact with the host by shedding vesicles that contain molecules important for the establishment of infection, as opposed to previous beliefs considering them as a waste of cellular metabolism. Trypanosomatids are compared with Apicomplexa, which circulate parasite antigens bound to vesicles shed by host cells. The knowledge of the origin and chemical composition of these different vesicles might lead to the understanding of the mechanisms that determine their biological function. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
A set of benzofuroxan derivatives was tested in vitro against Trypanosoma cruzi epimastigote forms. The influence of physicochemical properties on these benzofuroxan derivatives' activity was observed, and the presence of electron-withdrawing and hydrophobic groups attached to the benzene ring seems to make a favorable contribution at lower concentrations.
Resumo:
Five 2-hydroxy-3-substituted-aminomethyl naphthoquinones, nine 1,2,3-triazolic para-naphthoquinones, five nor-beta-lapachone-based 1,2,3-triazoles, and several other naphthoquinonoid compounds were synthesized and evaluated against the infective bloodstream form of Trypanosoma cruzi, the etiological agent of Chagas disease, continuing our screening program for new trypanocidal compounds. Among all the substances, 16-18, 23, 25-29 and 30-33 were herein described for the first time and fifteen substances were identified as more potent than the standard drug benznidazole, with IC50/24 h values in the range of 10.9-101.5 mu M. Compounds 14 and 19 with Selectivity Index of 18.9 and 6.1 are important structures for further studies. (C) 2012 Elsevier Masson SAS. All rights reserved.