25 resultados para Cebus nigritus
Resumo:
Wild bearded capuchin monkeys, Cebus libidinosus, use stone tools to crack palm nuts to obtain the kernel. In five experiments, we gave 10 monkeys from one wild group of bearded capuchins a choice of two nuts differing in resistance and size and/or two manufactured stones of the same shape, volume and composition but different mass. Monkeys consistently selected the nut that was easier to crack and the heavier stone. When choosing between two stones differing in mass by a ratio of 1.3:1, monkeys frequently touched the stones or tapped them with their fingers or with a nut. They showed these behaviours more frequently before making their first selection of a stone than afterward. These results suggest that capuchins discriminate between nuts and between stones, selecting materials that allow them to crack nuts with fewer strikes, and generate exploratory behaviours to discriminate stones of varying mass. In the final experiment, humans effectively discriminated the mass of stones using the same tapping and handling behaviours as capuchins. Capuchins explore objects in ways that allow them to perceive invariant properties (e.g. mass) of objects, enabling selection of objects for specific uses. We predict that species that use tools will generate behaviours that reveal invariant properties of objects such as mass; species that do not use tools are less likely to explore objects in this way. The precision with which individuals can judge invariant properties may differ considerably, and this also should predict prevalence of tool use across species. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Wild bearded capuchins, Cebus libidinosus, in Fazenda Boa Vista, Brazil crack tough palm nuts using hammer stones. We analysed the contribution of intrinsic factors (body weight, behaviour), size of the nuts and the anvil surface (flat or pit) to the efficiency of cracking. We provided capuchins with local palm nuts and a single hammer stone at an anvil. From video we scored the capuchins` position and actions with the nut prior to each strike, and outcomes of each strike. The most efficient capuchin opened 15 nuts per 100 strikes (6.6 strikes per nut). The least efficient capuchin that succeeded in opening a nut opened 1.32 nuts per 100 strikes (more than 75 strikes per nut). Body weight and diameter of the nut best predicted whether a capuchin would crack a nut on a given strike. All the capuchins consistently placed nuts into pits. To provide an independent analysis of the effect of placing the nut into a pit, we filmed an adult human cracking nuts on the same anvil using the same stone. The human displaced the nut on proportionally fewer strikes when he placed it into a pit rather than on a flat surface. Thus the capuchins placed the nut in a more effective location on the anvil to crack it. Nut cracking as practised by bearded capuchins is a striking example of a plastic behaviour where costs and benefits vary enormously across individuals, and where efficiency requires years to attain. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The use of stones to crack open encapsulated fruit is widespread among wild bearded capuchin monkeys (Cebus libidinosus) inhabiting savanna-like environments. Some populations in Serra da Capivara National Park (Piaui, Brazil), though, exhibit a seemingly broader toolkit, using wooden sticks as probes, and employing stone tools for a variety of purposes. Over the course of 701.5 hr of visual contact of two wild capuchin groups we recorded 677 tool use episodes. Five hundred and seventeen of these involved the use of stones, and 160 involved the use of sticks (or other plant parts) as probes to access water, arthropods, or the contents of insects` nests. Stones were mostly used as ""hammers""-not only to open fruit or seeds, or smash other food items, but also to break dead wood, conglomerate rock, or cement in search of arthropods, to dislodge bigger stones, and to pulverize embedded quartz pebbles (licking, sniffing, or rubbing the body with the powder produced). Stones also were used in a ""hammer-like"" fashion to loosen the soil for digging out roots and arthropods, and sometimes as ""hoes"" to pull the loosened soil. In a few cases, we observed the re-utilization of stone tools for different purposes (N = 3), or the combined use of two tools-stones and sticks (N = 4) or two stones (N = 5), as sequential or associative tools. On three occasions, the monkeys used smaller stones to loosen bigger quartz pebbles embedded in conglomerate rock, which were subsequently used as tools. These could be considered the first reports of secondary tool use by wild capuchin monkeys. Am. J. Primatol. 71:242-251, 2009. (c) 2008 Wiley-Liss, Inc.
Resumo:
Although parrots share with corvids and primates many of the traits believed to be associated with advanced cognitive processing, knowledge of parrot cognition is still limited to a few species, none of which are Neotropical. Here we examine the ability of three Neotropical parrot species (Blue-Fronted Amazons, Hyacinth and Lear`s macaws) to spontaneously solve a novel physical problem: the string-pulling test. The ability to pull up a string to obtain out-of-reach food has been often considered a cognitively complex task, as it requires the use of a sequence of actions never previously assembled, along with the ability to continuously monitor string, food and certain body movements. We presented subjects with pulling tasks where we varied the spatial relationship between the strings, the presence of a reward and the physical contact between the string and reward to determine whether (1) string-pulling is goal-oriented in these parrots, (2) whether the string is recognized as a means to obtain the reward and (3) whether subjects can visually determine the continuity between the string and the reward, selecting only those strings for which no physical gaps between string and reward were present. Our results show that some individuals of all species were able to use the string as a means to reach a specific goal, in this case, the retrieval of the food treat. Also, subjects from both macaw species were able to visually determine the presence of physical continuity between the string and reward, making their choices consistently with the recognition that no gaps should be present between the string and the reward. Our findings highlight the potential of this taxonomic group for the understanding of the underpinnings of cognition in evolutionarily distant groups such as birds and primates.
Resumo:
Appreciation of objects` affordances and planning is a hallmark of human technology. Archeological evidence suggests that Pliocene hominins selected raw material for tool making [1, 2]. Stone pounding has been considered a precursor to tool making [3, 4], and tool use by living primates provides insight into the origins of material selection by human ancestors. No study has experimentally investigated selectivity of stone tools in wild animals, although chimpanzees appear to select stones according to properties of different nut species [5, 6]. We recently discovered that wild capuchins with terrestrial habits [7] use hammers to crack open nuts on anvils [8-10]. As for chimpanzees, examination of anvil sites suggests stone selectivity [11], but indirect evidence cannot prove it. Here, we demonstrate that capuchins, which last shared a common ancestor with humans 35 million years ago, faced with stones differing in functional features (friability and weight) choose, transport, and use the effective stone to crack nuts. Moreover, when weight cannot be judged by visual attributes, capuchins act to gain information to guide their selection. Thus, planning actions and intentional selection of tools is within the ken of monkeys and similar to the tool activities of hominins and apes.
Resumo:
The present experiment investigated whether pigeons can show associative symmetry on a two-alternative matching to-sample procedure The procedure consisted of a within subject sequence of training and testing with reinforcement and It provided (a) exemplars of symmetrical responding and (b) all prerequisite discriminations among test samples and comparisons After pigeons had learned two arbitrary matching tasks (A B and C D) they were given a reinforced symmetry test for half of the baseline relations (B1-A1 and D1-C1) To control for the effects of reinforcement during testing two novel nonsymmetrical responses were concurrently reinforced using the other baseline stimuli (D2-A2 and B2-C2) Pigeons matched at chance on both types of relations thus indicating no evidence for symmetry These symmetrical and nonsymmetrical relations were then directly trained in order to provide exemplars of symmetry and all prerequisite discriminations for a second test The symmetrical test relations were now B2-A2 and D2-C2 and the nonsymmetrical relations were D1-A1 and B1-C1 On this test 1 pigeon showed clear evidence of symmetry 2 pigeons showed weak evidence and 1 pigeon showed no evidence The previous training of all prerequisite discriminations among stimuli and the within subject control for testing with reinforcement seem to have set favorable conditions for the emergence of symmetry in nonhumans However the variability across subjects shows that methodological variables still remain to be controlled
Resumo:
The color vision of most platyrrhine primates is determined by alleles at the polymorphic X-linked locus coding for the opsin responsible for the middle- to long-wavelength (M/L) cone photopigment. Females who are heterozygous at the locus have trichromatic vision, whereas homozygous females and all males are dichromatic. This study characterized the opsin alleles in a wild population of the socially monogamous platyrrhine monkey Callicebus brunneus (the brown titi monkey), a primate that an earlier study suggests may possess an unusual number of alleles at this locus and thus may be a subject of special interest in the study of primate color vision. Direct sequencing of regions of the M/L opsin gene using feces-, blood-, and saliva-derived DNA obtained from 14 individuals yielded evidence for the presence of three functionally distinct alleles, corresponding to the most common M/L photopigment variants inferred from a physiological study of cone spectral sensitivity in captive Callicebus. Am. J. Primatol. 73:189-196, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Five species of Ctenus from the Amazon basin are redescribed: C. delesserti (Caporiacco, 1947), C. falconensis Schenkel, 1953, C. nigritus F.O. Pickard-Cambridge, 1897, C. serratipes F.O. Pickard-Cambridge, 1897 and C. sigma (Schenkel, 1953). Three new synonymies are proposed: Ctenus fulvipes Caporiacco, 1947, C. itatiayaeformis Caporiacco, 1955 and C. scenicus Caporiacco, 1947 with C. serratipes. The female of Ctenus nigritus is described for the first time. The distributional ranges of Ctenus nigritus and C. serratipes are extended. We also present distributional maps of the five redescribed species.
Resumo:
Background: Canova activates macrophages and indirectly induces lymphocyte proliferation. Here we evaluated the effects of Canova in cyclophosphamide-treated non-human primates. Methods: Twelve Cebus apella were evaluated. Four animals were treated with Canova only. Eight animals were treated with two doses of cyclophosphamide (50 mg/kg) and four of these animals received Canova. Body weight, biochemistry and hematologic analyses were performed for 40 days. Micronucleus and comet assays were performed for the evaluation of DNA damage. Results: We observed that cyclophosphamide induced abnormal WBC count in all animals. However, the group treated with cyclophosphamide plus Canova presented a higher leukocyte count than that which received only cyclophosphamide. Cyclophosphamide induced micronucleus and DNA damage in all animals. The frequency of these alterations was significantly lower in the Canova group than in the group without this medicine. Conclusions: Our results demonstrated that Canova treatment minimizes cyclophosphamide myelotoxicity in C. apella. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Analyses of spatial relationships and social interactions provide insights into the social structure of animal societies and the ways in which social preferences among and between dyads affect higher order social relationships. In this paper we describe the patterns of spatial associations and social interactions among adult male northern muriquis in order to evaluate the dynamics of their social networks above the dyadic levels. Systematic observations were made on the 17 adult males present in a multi-male/multi-female group from April 2004 through February 2005, and in July 2005. Analyses of their spatial relationships identified two distinct male cliques; some adult males (called "N" males) were more connected to the females and immatures than other adult males ("MU" males), which were more connected to one another. Affiliative interactions were significantly higher among dyads belonging to the same clique than to different cliques. Although frequencies of dyadic agonistic interactions were similarly low among individuals within and between cliques, MU males appeared to be subordinate to N males. Nonetheless, there were no significant differences in the copulation rates estimated for MU males and N males. Mutual benefits of cooperation between MU and N cliques in intergroup encounters might explain their ongoing associations in the same mixed-sex group [Current Zoology 58 (2): 342-352, 2012].