26 resultados para Binding energies and masses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutron-rich lead isotopes, up to Pb-216, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond Pb-208.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, we report results of calculations based on density functional theory (BP86/TZVP) of a set of isatin-Schiff base copper(II) and related complexes, 1-12, that have shown significant pro-apoptotic activity toward diverse tumor cells. The interaction of the copper(II) cation with different ligands has been investigated at the same level of theory. The strength and character of the Cu(II)-L bonding was characterized by metal-ligand bond lengths, vibrational frequencies, binding energies, ligand deformation energies, and natural population analysis. The metal-ligand bonding situation was also characterized by using two complementary topological approaches, the quantum theory of atoms-in-molecules (QTAIM) and the electron localization function (ELF). The calculated electronic g-tensor and hyperfine coupling constants present significant agreement with the EPR experimental data. The calculated parameters pointed to complex 10 as the most stable among the isatin-Schiff base copper(II) species, in good agreement with experimental data that indicate this complex as the most reactive in the series. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of sugar cane bagasse cellulose saccharification and the decomposition of glucose under extremely low acid (ELA) conditions, (0.07%), 0.14%, and 0.28% H2SO4, and at high temperatures were investigated using batch reactors. The first-order rate constants were obtained by weight loss, remaining glucose, and fitting glucose concentration profiles determined with HPLC using the Saeman model. The maximum glucose yields reached 67.6% (200 degrees C, 0.07% H2SO4, 30 min), 69.8% (210 degrees C, 0.14% H2SO4, 10 min), and 67.3% (210 degrees C, 0.28% H2SO4, 6 min). ELA conditions produced remarkable glucose yields when applied to bagasse cellulose. The first-order rate constants were used to calculate activation energies and extrathermodynamic parameters to elucidate the reaction mechanism under ELA conditions. The effect of acid concentration on cellulose hydrolysis and glucose decomposition was also investigated. The observed activation energies and reaction orders with respect to hydronium ion for cellulose hydrolysis and glucose decomposition were 184.9 and 124.5 kJ/mol and 1.27 and 0.75, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate of solvolysis of p-nitrophenyl phosphate (PNPP) dianion in DMSO/water strongly decreases by increasing water concentration. Addition of linear alcohols (methanol, propanol, butanol, pentanol, and hexanol) at constant DMSO/water molar ratio produced an even sharper rate decrease. Alkyl phosphate formation, resulting from PNPP solvolysis in ternary DMSO/water/alcohol mixtures, increased with alcohol concentration and was essentially temperature independent. Methanol and hexanol were the poorest nucleophiles under all conditions. Activation energies and enthalpies for solvolysis in ternary mixtures were similar and entropies varied with alcohol concentration. Taken together these results can be best interpreted in terms of a dissociative mechanism with the intervention of metaphosphate. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) gamma to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPAR gamma ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPAR gamma LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPAR gamma LBD, stronger partial agonists with full length PPAR gamma and exhibit full blockade of PPAR gamma phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPAR gamma also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/beta-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPAR gamma modulators with useful clinical profiles among natural products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis (TB) is a major infectious disease caused by Mycobacterium tuberculosis (Mtb). According to the World Health Organization (WHO), about 1.8 million people die from TB and 10 million new cases are recorded each year. Recently, a new series of naphthylchalcones has been identified as inhibitors of Mtb protein tyrosine phosphatases (PTPs). In this work, 100 chalcones were designed, synthesized, and investigated for their inhibitory properties against MtbPtps. Structure-activity relationships (SAR) were developed, leading to the discovery of new potent inhibitors with IC50 values in the low-micromolar range. Kinetic studies revealed competitive inhibition and high selectivity toward the Mtb enzymes. Molecular modeling investigations were carried out with the aim of revealing the most relevant structural requirements underlying the binding affinity and selectivity of this series of inhibitors as potential anti-TB drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ligand-based drug design study was performed to acetaminophen regioisomers as analgesic candidates employing quantum chemical calculations at the DFT/B3LYP level of theory and the 6-31G* basis set. To do so, many molecular descriptors were used such as highest occupied molecular orbital, ionization potential, HO bond dissociation energies, and spin densities, which might be related to quench reactivity of the tyrosyl radical to give N-acetyl-p-benzosemiquinone-imine through an initial electron withdrawing or hydrogen atom abstraction. Based on this in silico work, the most promising molecule, orthobenzamol, was synthesized and tested. The results expected from the theoretical prediction were confirmed in vivo using mouse models of nociception such as writhing, paw licking, and hot plate tests. All biological results suggested an antinociceptive activity mediated by opioid receptors. Furthermore, at 90 and 120 min, this new compound had an effect that was comparable to morphine, the standard drug for this test. Finally, the pharmacophore model is discussed according to the electronic properties derived from quantum chemistry calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the results of magnetophotoluminescence (MPL) measurements carried out in a sample containing two Al0.35Ga0.65As/GaAs, coupled double quantum wells (CDQWs), with inter-well barriers of different thicknesses, which have the heterointerfaces characterized by a distribution of bimodal roughness. The MPL measurements were performed at 4 K, with magnetic fields applied parallel to the growth direction, and varying from 0 to 12 T. The diamagnetic shift of the photoluminescence (PL) peaks is more sensitive to changes in the confinement potential, due to monolayer variations in the mini-well thickness, rather than to the exciton localization at the local potential fluctuations. As the magnetic field increases, the relative intensities of the two peaks in each PL band inverts, what is attributed to the reduction in the radiative lifetime of the delocalized excitons, which results in the radiative recombination, before the excitonic migration between the higher and lower energy regions in each CDQW occurs. The dependence of the full width at half maximum (FWHM) on magnetic field shows different behaviors for each PL peak, which are attributed to the different levels and correlation lengths of the potential fluctuations present in the regions associated with each recombination channel. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adiponectin and interleukin 10 (IL-10) are adipokines that are predominantly secreted by differentiated adipocytes and are involved in energy homeostasis, insulin sensitivity, and the anti-inflammatory response. These two adipokines are reduced in obese subjects, which favors increased activation of nuclear factor kappa B (NF-kappa B) and leads to elevation of pro-inflammatory adipokines. However, the effects of adiponectin and IL-10 on NF-kappa B DNA binding activity (NF-kappa Bp50 and NF-kappa Bp65) and proteins involved with the toll-like receptor (TLR-2 and TLR-4) pathway, such as MYD88 and TRAF6 expression, in lipopolysaccharide-treated 3T3-L1 adipocytes are unknown. Stimulation of lipopolysaccharide-treated 3T3-L1 adipocytes for 24 h elevated IL-6 levels; activated the NF-kappa B pathway cascade; increased protein expression of IL-6R, TLR-4, MYD88, and TRAF6; and increased the nuclear activity of NF-kappa B (p50 and p65) DNA binding. Adiponectin and IL-10 inhibited the elevation of IL-6 levels and activated NF-kappa B (p50 and p65) DNA binding. Taken together, the present results provide evidence that adiponectin and IL-10 have an important role in the anti-inflammatory response in adipocytes. In addition, inhibition of NF-kappa B signaling pathways may be an excellent strategy for the treatment of inflammation in obese individuals. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcohol and tobacco consumption are risk factors for head and neck squamous cell carcinoma (HNSCC). Aldehyde dehydrogenase 2 (ALDH2) and glutathione Stransferase pi 1 (GSTP1) are important enzymes for cellular detoxification and low efficiencies are implicated in cancer. We assessed the potential role of SET protein overexpression, a histone acetylation modulator accumulated in HNSCC, in gene regulation and protein activity of ALDH2 and GSTP1. SET was knocked down in HN13, HN12 and Cal27, and overexpressed in HEK293 cells; ethanol and cisplatin were the chemical agents. Cells with SET overexpression (HEK293/SET, HN13 and HN12) showed lower ALDH2 and GSTP1 mRNA levels and trichostatin A increased them (real-time PCR). Ethanol upregulated GSTP1 and ALDH2 mRNAs, whereas cisplatin upregulated GSTP1 in HEK293 cells. SET-chromatin binding revealed SET interaction with ALDH2 and GSTP1 promoters, specifically via SET NAP domain; ethanol and cisplatin abolished SET binding. ALDH2 and GSTP1 efficiency was assessed by enzymatic and comet assay. A lower ALDH2 activity was associated with greater DNA damage (tail intensity) in HEK293/SET compared with HEK293 cells, whereas HN13/siSET showed ALDH2 activity higher than HN13 cells. HN13/siSET cells showed increased tail intensity. Cisplatin-induced DNA damage response showed negative relationship between SET overexpression and BRCA2 recruitment. SET downregulated repair genes ATM, BRCA1 and CHEK2 and upregulated TP53. Cisplatin-induced cell-cycle arrest occurred in G0/G1 and S in HEK293 cells, whereas HEK293/SET showed G2/M stalling. Overall, cisplatin was more cytotoxic for HN13 than HN13/siSET cells. Our data suggest a role for SET in cellular detoxification, DNA damage response and genome integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The development of the gastrointestinal tract depends on many elements, including glucocorticoids. In the current study, we evaluated the effects of early weaning on corticosterone function and the growth of rat gastric mucosa. Methods: By using Wistar rats submitted to early weaning at 15 d, we analyzed plasma corticosterone, corticosteroid-binding globulin (CBG), and glucocorticoid receptor (GR) distribution in the gastric epithelium. Results: With the use of radioimmunoassay, we found that early weaning increased corticosterone concentration at day 16 and 17 in test subjects as compared with controls, whereas it was equivalent between groups at day 18. CBG binding capacity decreased during treatment, and it was significantly lower at day 18. At this age, GR levels and distribution in the gastric mucosa were also reduced as compared with suckling counterparts. To reduce corticosterone activity during early weaning and to explore cell proliferation responses, we administered RU486 to 15-d-old pups. We found that cytoplasmic GR reached a peak after 48 h, whereas nuclear levels remained constant, thereby confirming the inhibition of receptor function. Next, by checking gastric proliferative responses, we observed that RU486 induced higher DNA synthesis and mitotic indices in test subjects as compared with control groups. Conclusions: We demonstrated that early weaning changed corticosterone activity by increasing hormone levels, reducing CBG binding capacity, and decreasing GR distribution in the gastric epithelium. These modifications seem to be important to the reorganization of gastric growth after the abrupt interruption of suckling.