40 resultados para BEAM EQUATION
Resumo:
The neurovascular bundle may be vulnerable during surgical procedures involving the mandible, especially when anatomical variations are present. Increased demand of implant surgeries, wider availability of three-dimensional exams, and lack of clear definitions in the literature indicate that features of anatomical variations should be revisited. The objective of the study was to evaluate features of anatomical variations related to mandibular canal (MC), such as bifid canals, anterior loop of mental nerve, and corticalization of MC. Additionally, bone trabeculation at the submandibular gland fossa region (SGF) was assessed and related to visibility of MC. Cone beam computed tomography exams from 100 patients (200 hemimandibles) were analyzed and the following parameters were registered: diameter and corticalization of MC; trabeculation in SGF region; presence of bifid MC, position of bifurcations, diameter, and direction of bifid canals; and measurement of anterior loops by two methods. Corticalization of the MC was observed in 59% of hemimandibles. In 23%, MC could be identified despite absence of corticalization. Diameter of MC was between 2.1 and 4 mm for nearly three quarters of the sample. In 80% of the sample trabeculation at the SGF was either decreased or not visible, and such cases showed correlation with absence of MC corticalization. Bifid MC affected 19% of the patients, mostly associated with additional mental foramina. Clinically significant anterior loop (> 2 mm of anterior extension) was observed in 22-28%, depending on the method. Our findings, together with previously reported limitations of conventional exams, draw attention to the unpredictability related to anatomical variations in neurovascularization, showing the contribution of individual assessment through different views of three-dimensional imaging prior to surgical procedures in the mandible.
Resumo:
Cone beam computed tomography (CBCT) can be considered as a valuable imaging modality for improving diagnosis and treatment planning to achieve true guidance for several craniofacial surgical interventions. A new concept and perspective in medical informatics is the highlight discussion about the new imaging interactive workflow. The aim of this article was to present, in a short literature review, the usefulness of CBCT technology as an important alternative imaging modality, highlighting current practices and near-term future applications in cutting-edge thought-provoking perspectives for craniofacial surgical assessment. This article explains the state of the art of CBCT improvements, medical workstation, and perspectives of the dedicated unique hardware and software, which can be used from the CBCT source. In conclusion, CBCT technology is developing rapidly, and many advances are on the horizon. Further progress in medical workstations, engineering capabilities, and improvement in independent software-some open source-should be attempted with this new imaging method. The perspectives, challenges, and pitfalls in CBCT will be delineated and evaluated along with the technological developments.
Resumo:
Background: Owing to a lack of symptoms and difficult visualization in routine intraoral radiographs, diagnosis of external root resorptions can be challenging. Aim: The goal of this study was to compare two image acquisition methods, intraoral radiographs and cone beam computed tomography (CBCT), in the diagnosis of external resorption. Material and Methods: Thirty-four maxillary and mandibular bicuspids were divided into three groups. Perforations measuring 0.3 and 0.6 mm in diameter and 0.15 and 0.3 mm in depth, respectively, were made on the lingual root surfaces in thirty teeth, and four were used as controls. Next, teeth were mounted on an apparatus and radiographed at mesial, distal, and orthoradial angulations. CBCT images were also taken. The analysis of the intraoral radiographic and tomographic images was carried out by two experts using standardized scores. Data were then compared statistically. Results: A strong agreement between the examiners was observed in both diagnosis methods, the intraoral radiographic (r = 0.93) and the tomographic analysis (r = 1.0). Tomography had higher statistically significant detection values than intraoral radiography (P < 0.05). In intraoral radiographs, the detection was significantly greater (P < 0.05) in the mandibular bicuspids, compared with their maxillary counterparts. The ability to detect 0.6-mm perforations by intraoral radiography was significantly higher than that of 0.3-mm perforations (P < 0.05). Conclusion: Cone beam computed tomography showed better diagnostic ability compared with intraoral radiography, regardless of the tooth or the dimensions of the resorption evaluated.
Resumo:
The present article discusses an atrophic maxilla reconstruction with iliac crest bone block and particulate grafts and dental implants. Onlay block grafts were used to restore bone volume of the anterior maxilla, whereas bilateral sinus floor augmentation was performed using a particulate graft. Ten months after the grafting surgery, 9 dental implants were placed to rehabilitate the case. Results of a 7-year follow-up were obtained clinically and by cone beam computed tomographic images.
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Resumo:
This paper is concerned with the energy decay for a class of plate equations with memory and lower order perturbation of p-Laplacian type, utt+?2u-?pu+?0tg(t-s)?u(s)ds-?ut+f(u)=0inOXR+, with simply supported boundary condition, where O is a bounded domain of RN, g?>?0 is a memory kernel that decays exponentially and f(u) is a nonlinear perturbation. This kind of problem without the memory term models elastoplastic flows.
Resumo:
From microscopic models, a Langevin equation can, in general, be derived only as an approximation. Two possible conditions to validate this approximation are studied. One is, for a linear Langevin equation, that the frequency of the Fourier transform should be close to the natural frequency of the system. The other is by the assumption of "slow" variables. We test this method by comparison with an exactly soluble model and point out its limitations. We base our discussion on two approaches. The first is a direct, elementary treatment of Senitzky. The second is via a generalized Langevin equation as an intermediate step.
Resumo:
The yrast level structure of Rn-215 has been studied by means of in-beam spectroscopy alpha-gamma-gamma coincidence techniques through the Pb-207(O-18,2 alpha 2n) reaction at 93 MeV bombarding energy, using the 8 pi GASP-ISIS spectrometer at Legnaro. New spectroscopic information has been obtained. The deduced low-lying level scheme of Rn-215 does not exhibit the alternating parity structure observed in the heavier known isotones Fr-216, Ra-217, Ac-218, and Th-219. From this result, the lightest nucleus showing evidence for octupole collectivity is Fr-216, defining the lowest-mass corner for this kind of phenomenon as N >= 129 and Z >= 87.
Resumo:
Background: The double burden of obesity and underweight is increasing in developing countries and simple methods for the assessment of fat mass in children are needed. Aim: To develop and validate a new anthropometric predication equation for assessment of fat mass in children. Subjects and methods: Body composition was assessed in 145 children aged 9.8 +/- 1.3 (SD) years from Sao Paulo, Brazil using dual energy X-ray absorptiometry (DEXA) and skinfold measurements. The study sample was divided into development and validation sub-sets to develop a new prediction equation for FM (PE). Results: Using multiple linear regression analyses, the best equation for predicting FM (R-2 - 0.77) included body weight, triceps skinfold, height, gender and age as independent variables. When cross-validated, the new PE was valid in this sample (R-2 = 0.80), while previously published equations were not. Conclusion: The PE was more valid for Brazilian children that existing equations, but further studies are needed to assess the validity of this PE in other populations.
Resumo:
Objectives: To integrate data from two-dimensional echocardiography (2D ECHO), three-dimensional echocardiography (3D ECHO), and tissue Doppler imaging (TDI) for prediction of left ventricular (LV) reverse remodeling (LVRR) after cardiac resynchronization therapy (CRT). It was also compared the evaluation of cardiac dyssynchrony by TDI and 3D ECHO. Methods: Twenty-four consecutive patients with heart failure, sinus rhythm, QRS = 120 msec, functional class III or IV and LV ejection fraction (LVEF) = 0.35 underwent CRT. 2D ECHO, 3D ECHO with systolic dyssynchrony index (SDI) analysis, and TDI were performed before, 3 and 6 months after CRT. Cardiac dyssynchrony analyses by TDI and SDI were compared with the Pearson's correlation test. Before CRT, a univariate analysis of baseline characteristics was performed for the construction of a logistic regression model to identify the best predictors of LVRR. Results: After 3 months of CRT, there was a moderate correlation between TDI and SDI (r = 0.52). At other time points, there was no strong correlation. Nine of twenty-four (38%) patients presented with LVRR 6 months after CRT. After logistic regression analysis, SDI (SDI > 11%) was the only independent factor in the prediction of LVRR 6 months of CRT (sensitivity = 0.89 and specificity = 0.73). After construction of receiver operator characteristic (ROC) curves, an equation was established to predict LVRR: LVRR =-0.4LVDD (mm) + 0.5LVEF (%) + 1.1SDI (%), with responders presenting values >0 (sensitivity = 0.67 and specificity = 0.87). Conclusions: In this study, there was no strong correlation between TDI and SDI. An equation is proposed for the prediction of LVRR after CRT. Although larger trials are needed to validate these findings, this equation may be useful to candidates for CRT. (Echocardiography 2012;29:678-687)
Resumo:
The Chafee-Infante equation is one of the canonical infinite-dimensional dynamical systems for which a complete description of the global attractor is available. In this paper we study the structure of the pullback attractor for a non-autonomous version of this equation, u(t) = u(xx) + lambda(xx) - lambda u beta(t)u(3), and investigate the bifurcations that this attractor undergoes as A is varied. We are able to describe these in some detail, despite the fact that our model is truly non-autonomous; i.e., we do not restrict to 'small perturbations' of the autonomous case.
Resumo:
In this article, we study the existence of mild solutions for fractional neutral integro-differential equations with infinite delay.
Resumo:
A charged particle is considered in a complex external electromagnetic field. The field is a superposition of an Aharonov-Bohm field and some additional field. Here we describe all additional fields known up to the present time that allow exact solution of the Schrodinger equation in a complex field.
Resumo:
Objective: Cone-beam computed tomography (CBCT) is a reliable method of assessing the oral cavity and upper airways. We conducted this study to examine the changes introduced by rapid maxillary expansion in the nasal cavity, nasopharynx, and oropharynx as seen with images obtained by CBCT. Materials and Methods: We evaluated 15 patients with maxillary width deficiency treated with RME. Patients were subjected to CBCT at the beginning of RME and after the retention period of 4 months. Results: The nasal cavity presented a significant transverse increase in the lower third, in the anterior (1.08 mm +/- 0.15), medium (1.28 mm +/- 0.15), and posterior regions (0.77 mm +/- 0.12). No significant change occurred in the nasopharynx in volume (P = .11), median sagittal area (P = .33), or lower axial area (P = .29) resulting from the RME. A significant change was noted in the oropharynx in volume (P = .05), median sagittal area (P = .01), and lower axial area (P = .04) before and immediately after the RME. Conclusions: RME is able to increase the transverse width of the nasal cavity, but it does not have the same effect in the nasopharynx. Changes noted in the oropharynx may be due to the lack of a standardized position of the head and tongue at the time of image acquisition. (Angle Orthod. 2012;82:458-463.)
Resumo:
Objectives: To verify the thickness and level of alveolar bone around the teeth adjacent to the cleft by means of cone beam computed tomography (CBCT) in patients with complete bilateral cleft lip and palate prior to bone graft surgery and orthodontic intervention. Method: The sample comprised 10 patients with complete bilateral cleft lip and palate (five boys and five girls) in the mixed dentition. The mean age was 9.5 years, and all subjects showed a G3 interarch relationship according to the Bauru index. The thickness of alveolar bone surrounding the maxillary incisors and the maxillary canines was measured in CBCT axial section using the software iCAT Xoran System. The distance between the alveolar bone crest and the cement-enamel junction (CEJ) was measured in cross sections. Results: The tomography images showed a thin alveolar bone plate around teeth adjacent to clefts. No bone dehiscence was observed in teeth adjacent to clefts during the mixed dentition. A slight increase in the distance between the alveolar bone crest and the CEJ was observed in the mesial and lingual aspects of canines adjacent to cleft. Conclusion: In patients with BCLP in the mixed dentition, teeth adjacent to the alveolar cleft are covered by a thin alveolar bone plate. However, the level of alveolar bone crest around these teeth seems to be normal, and no bone dehiscence was identified at this age.