50 resultados para Air - Pollution - Manaus (Brazil)
Resumo:
Background: Air pollution is associated with a substantial burden on human health; however, the most important pollutants may vary with location. Proper monitoring is necessary to determine the effect of these pollutants on respiratory health. Objectives: This study was designed to evaluate the role of outdoor, indoor and personal exposure to combustion-related pollutants NO2 and O-3 on respiratory health of children in a non-affluent urban area of Sao Paulo, Brazil. Methods: Levels of NO2 and O-3 were continuously measured in outdoor and indoor air, as well as personal exposure, for 30 days using passive measurement monitors. Respiratory health was assessed with a Brazilian version of the ISAAC questionnaire. Results: Complete data were available from 64 children, aged 6-10 years. Respiratory morbidity was high, with 43 (67.2%) reporting having had wheezing at any time, 27 (42.2%) wheezing in the last month, 17 (26.6%) asthma at any time and 21(32.8%) pneumonia at any time. Correlations between levels of NO2 and O-3 measured in the three locations evaluated were poor. Levels of NO2 in indoor air and personal exposure to O-3 were independently associated with asthma (both cases P=.02), pneumonia (O-3, P=.02) and wheezing at any time (both cases P<.01). No associations were seen between outdoor NO2 and O-3 and respiratory health. Conclusions: Exposure to higher levels of NO2 and O-3 was associated with increased risk for asthma and pneumonia in children. Nonetheless, the place where the pollutants are measured influences the results. The measurements taken in indoor and personal exposure were the most accurate. (C) 2012 SEPAR. Published by Elsevier Espana, S.L. All rights reserved.
Resumo:
The objective of this study was to determine the size and composition of atmospheric aerosols in the downtown area of the city of So Paulo, Brazil, for a polluted and an unpolluted period. Aerosols were sampled with a portable air sampler (PAS), Micro-Orifice Uniform Deposit Impactor (MOUDI), and Scanning Mobility Particle Sizer. At the study site, air quality is poor, especially during the winter, high concentrations of pollutants being emitted primarily by the light- and heavy-duty vehicle fleet. We analyzed mass, black carbon (BC), Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sn, Zr, and Pb. During the polluted period, diurnal PM(10) was higher than nocturnal PM(10), whereas the inverse was true during the unpolluted period. The FPM was rich in BC, S, and Pb, whereas CPM was rich in Al, Si, Ca, Ti, and Fe. Mass balance was performed by category: ammonium sulfate, sodium chloride, crustal material, BC, and other. The PAS-determined FPM was mainly BC. The MOUDI-determined FPM crustal material explained more mass than did ammonium sulfate and BC during the polluted period, whereas ammonium sulfate had the largest mass during the unpolluted period. Crustal material was the major CPM component, followed by ammonium sulfate and BC. During the unpolluted period, FPM concentrations were lower, whereas those of ammonium sulfate were relatively higher, especially at night, and particle number was inversely proportional to particle size. Aerosol growth was more intense during the polluted period.
Resumo:
The main goal of this work is to describe the diurnal and seasonal variations of the radiation balance components at the surface in the city of So Paulo based on observations carried out during 2004. Monthly average hourly values indicate that the amplitudes of the diurnal cycles of net radiation (Q*), downwelling and upwelling shortwave radiation (SW(DW), SW(UP)), and longwave radiations (LW(DW), LW(UP)) in February were, respectively, 37%, 14%, 19%, 11%, and 5% larger than they were in August. The monthly average daily values indicate a variation of 60% for Q*, with a minimum in June and a maximum in December; 45% for SW(DW), with a minimum in May and a maximum in September; 50% for SW(UP), with a minimum in June and a maximum in September; 13% for LW(DW), with a minimum in July and a maximum in January; and 9% for LW(UP), with a minimum in July and a maximum in February. It was verified that the atmospheric broadband transmissivity varied from 0.36 to 0.57; the effective albedo of the surface varied from 0.08 to 0.10; and the atmospheric effective emissivity varied from 0.79 to 0.92. The surface effective emissivity remained approximately constant and equal to 0.96. The albedo and surface effective emissivity for So Paulo agreed with those reported for urban areas in Europe and North America cities. This indicates that material and geometric effects on albedo and surface emissivity in So Paulo are similar to ones observed in typical middle latitudes cities. On the other hand, it was found that So Paulo city induces an urban heat island with daytime maximum intensity varying from 2.6A degrees C in July (16:00 LT) to 5.5A degrees C in September (15:00 LT). The analysis of the radiometric properties carried out here indicate that this daytime maximum is a primary response to the seasonal variation of daily values of net solar radiation at the surface.
Resumo:
This study deals with the seasonal distribution of Al, Ca, Cu, Fe, K, Mg, Na, Pb and Zn and water soluble ions (Cl-, PO43-, NO3-, SO42-, HCOO-, CH3COO-, oxalate, succinate, Na+, NH4+, K+, Mg2+ and Ca2+) found in PM10 samples (particulate matter less than 10 mu m in diameter) Sao Paulo City, Brazil, (April 2003-May 2004). Higher atmospheric levels were found for SO42-, NO3-, Cl- and PO43- while the main organic anions were oxalate and formate. Atmospheric levels for elements were: Fe > Al > Ca > K > Na > Mg > Zn > Cu > Pb. Some sources were predominant for some species: (i) fuel burning and/or biomass burning (NO3-, HCOO-, C2O42-, K+, Mg2+, Ca2+, Fe, Pb, Zn, Al, Ca, K and Mg), (ii) gas-to-particle conversion (SO42- and NH4+) and (iii) sea salt spray (Cl-, Na+ and Na).
Resumo:
In the Metropolitan Area of Sao Paulo (MASP), located in southeastern Brazil, surface ozone concentrations are often well above the national air quality standards. In this experimental study, we attempted to characterize the vertical profile of atmospheric ozone and transport of the ozone plume in the boundary layer, using data from the first ozone soundings ever taken in the MASP. In 2006, we launched fifteen ozonesondes: eight from 15 to 18 May (dry season); and seven from 30 October to 1 November (wet season). Vertical ozone mixing ratios in the troposphere were approximately 40 ppb, reaching maximum values of approximately 60 ppb during the dry-season campaign and approximately 100 ppb during the wet-season campaign. In the first and second campaigns, the mean tropospheric ozone column abundance was 28.2 and 41.3 DU, respectively, which can be attributed to the considerable variation in the annual temperature cycle over the region. To determine the effect that biomass burning has on ozone concentrations over the MASP, we analyzed wind trajectories and satellite-derived fire counts. We cannot state unequivocally that biomass burning contributed to higher ozone concentrations above the boundary layer during the experimental campaigns. In the boundary layer, ozone concentrations increase with altitude, peaking at the base of the inversion layer, suggesting that local emissions of volatile organic compounds and nitrogen oxides play a significant role in the lower troposphere over MASP, influencing ozone formation not only at the surface but also vertically in the atmosphere and in distant regions. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this study, Canoparmelia texana lichenized fungi species was used as a passive biomonitor of the atmospheric pollution from the industrial city of So Mateus do Sul, PR, Brazil. Lichen samples collected from tree barks were cleaned, freeze-dried and analyzed by neutron activation analysis. Comparisons were made between the element concentrations obtained in lichens from this city and that from a clean area of Atlantic Forest in Intervales Park, SP. The high concentrations of elements As, Ca, Co, Cr, Fe, Hf, Sb, and Th found in lichens could be attributed to the emissions from a ceramic and an oil shale plants.
Resumo:
Background: Brazil is the world's largest producer of sugarcane. Harvest is predominantly manual, exposing workers to health risks: intense physical exertion, heat, pollutants from sugarcane burning. Design: Panel study to evaluate the effects of burnt sugarcane harvesting on blood markers and on cardiovascular system. Methods: Twenty-eight healthy male workers, living in the countryside of Brazil were submitted to blood markers, blood pressure, heart rate variability, cardiopulmonary exercise testing, sympathetic nerve activity evaluation and forearm blood flow measures (venous occlusion plethysmography) during burnt sugarcane harvesting and four months later while they performed other activities in sugar cane culture. Results: Mean participant age was 31 +/- 6.3 years, and had worked for 9.8 +/- 8.4 years on sugarcane work. Work during the harvest period was associated with higher serum levels of Creatine Kinase - 136.5 U/L (IQR: 108.5-216.0) vs. 104.5 U/L (IQR: 77.5-170.5), (p = 0.001); plasma Malondialdehyde-7.5 +/- 1.4 mu M/dl vs. 6.9 +/- 1.0 mu M/dl, (p = 0.058); Glutathione Peroxidase - 55.1 +/- 11.8 Ug/Hb vs. 39.5 +/- 9.5 Ug/Hb, (p < 0.001); Glutathione Transferase- 3.4 +/- 1.3 Ug/Hb vs. 3.0 +/- 1.3 Ug/Hb, (p = 0.001); and 24-hour systolic blood pressure - 120.1 +/- 10.3 mmHg vs. 117.0 +/- 10.0 mmHg, (p = 0.034). In cardiopulmonary exercise testing, rest-to-peak diastolic blood pressure increased by 11.12 mmHg and 5.13 mmHg in the harvest and non-harvest period, respectively. A 10 miliseconds reduction in rMSSD and a 10 burst/min increase in sympathetic nerve activity were associated to 2.2 and 1.8 mmHg rises in systolic arterial pressure, respectively. Conclusion: Work in burnt sugarcane harvesting was associated with changes in blood markers and higher blood pressure, which may be related to autonomic imbalance.
Resumo:
Abstract Background Air pollution in São Paulo is constantly being measured by the State of Sao Paulo Environmental Agency, however there is no information on the variation between places with different traffic densities. This study was intended to identify a gradient of exposure to traffic-related air pollution within different areas in São Paulo to provide information for future epidemiological studies. Methods We measured NO2 using Palmes' diffusion tubes in 36 sites on streets chosen to be representative of different road types and traffic densities in São Paulo in two one-week periods (July and August 2000). In each study period, two tubes were installed in each site, and two additional tubes were installed in 10 control sites. Results Average NO2 concentrations were related to traffic density, observed on the spot, to number of vehicles counted, and to traffic density strata defined by the city Traffic Engineering Company (CET). Average NO2concentrations were 63μg/m3 and 49μg/m3 in the first and second periods, respectively. Dividing the sites by the observed traffic density, we found: heavy traffic (n = 17): 64μg/m3 (95% CI: 59μg/m3 – 68μg/m3); local traffic (n = 16): 48μg/m3 (95% CI: 44μg/m3 – 52μg/m3) (p < 0.001). Conclusion The differences in NO2 levels between heavy and local traffic sites are large enough to suggest the use of a more refined classification of exposure in epidemiological studies in the city. Number of vehicles counted, traffic density observed on the spot and traffic density strata defined by the CET might be used as a proxy for traffic exposure in São Paulo when more accurate measurements are not available.
Resumo:
OBJECTIVE: Due to their toxicity, diesel emissions have been submitted to progressively more restrictive regulations in developed countries. However, in Brazil, the implementation of the Cleaner Diesel Technologies policy (Euro IV standards for vehicles produced in 2009 and low-sulfur diesel with 50 ppm of sulfur) was postponed until 2012 without a comprehensive analysis of the effect of this delay on public health parameters. We aimed to evaluate the impact of the delay in implementing the Cleaner Diesel Technologies policy on health indicators and monetary health costs in Brazil. METHODS: The primary estimator of exposure to air pollution was the concentration of ambient fine particulate matter (particles with aerodynamic diameters, <2.5 mu m, [PM2.5]). This parameter was measured daily in six Brazilian metropolitan areas during 2007-2008. We calculated 1) the projected reduction in the PM2.5 that would have been achieved if the Euro IV standards had been implemented in 2009 and 2) the expected reduction after implementation in 2012. The difference between these two time curves was transformed into health outcomes using previous dose-response curves. The economic valuation was performed based on the DALY (disability-adjusted life years) method. RESULTS: The delay in implementing the Cleaner Diesel Technologies policy will result in an estimated excess of 13,984 deaths up to 2040. Health expenditures are projected to be increased by nearly US$ 11.5 billion for the same period. CONCLUSIONS: The present results indicate that a significant health burden will occur because of the postponement in implementing the Cleaner Diesel Technologies policy. These results also reinforce the concept that health effects must be considered when revising fuel and emission policies.
Resumo:
The study introduces a new regression model developed to estimate the hourly values of diffuse solar radiation at the surface. The model is based on the clearness index and diffuse fraction relationship, and includes the effects of cloud (cloudiness and cloud type), traditional meteorological variables (air temperature, relative humidity and atmospheric pressure observed at the surface) and air pollution (concentration of particulate matter observed at the surface). The new model is capable of predicting hourly values of diffuse solar radiation better than the previously developed ones (R-2 = 0.93 and RMSE = 0.085). A simple version with a large applicability is proposed that takes into consideration cloud effects only (cloudiness and cloud height) and shows a R-2 = 0.92. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To investigate the lag structure effects from exposure to atmospheric pollution in acute outbursts in hospital admissions of paediatric rheumatic diseases (PRDs). Methods: Morbidity data were obtained from the Brazilian Hospital Information System in seven consecutive years, including admissions due to seven PRDs (juvenile idiopathic arthritis, systemic lupus erythematosus, dermatomyositis, Henoch-Schonlein purpura, polyarteritis nodosa, systemic sclerosis and ankylosing spondylitis). Cases with secondary diagnosis of respiratory diseases were excluded. Daily concentrations of inhaled particulate matter (PM10), sulphur dioxide (SO2) nitrogen dioxide (NO2), ozone (O-3) and carbon monoxide (CO) were evaluated. Generalized linear Poisson regression models controlling for short-term trend, seasonality, holidays, temperature and humidity were used. Lag structures and magnitude of air pollutants' effects were adopted to estimate restricted polynomial distributed lag models. Results: The total number of admissions due to acute outbursts PRD was 1,821. The SO2 interquartile range (7.79 mu g/m(3)) was associated with an increase of 1.98% (confidence interval 0.25-3.69) in the number of hospital admissions due to outcome studied after 14 days of exposure. This effect was maintained until day 17. Of note, the other pollutants, with the exception of O-3, showed an increase in the number of hospital admissions from the second week. Conclusion: This study is the first to demonstrate a delayed association between SO2 and PRD outburst, suggesting that oxidative stress reaction could trigger the inflammation of these diseases. Lupus (2012) 21, 526-533.
Resumo:
Background: The use of biomass for cooking and heating is considered an important factor associated with respiratory diseases. However, few studies evaluate the amount of particulate matter less than 2.5 mu in diameter (PM2.5), symptoms and lung function in the same population. Objectives: To evaluate the respiratory effects of biomass combustion and compare the results with those of individuals from the same community in Brazil using liquefied petroleum gas (Gas). Methods: 1402 individuals in 260 residences were divided into three groups according to exposure (Gas, Indoor-Biomass, Outside-Biomass). Respiratory symptoms were assessed using questionnaires. Reflectance of paper filters was used to assess particulate matter exposure. In 48 residences the amount of PM2.5 was also quantified. Pulmonary function tests were performed in 120 individuals. Results: Reflectance index correlated directly with PM2.5 (r=0.92) and was used to estimate exposure (ePM2.5). There was a significant increase in ePM2.5 in Indoor-Biomass and Outside-Biomass, compared to Gas. There was a significantly increased odds ratio (OR) for cough, wheezing and dyspnea in adults exposed to Indoor-Biomass (OR=2.93, 2.33, 2.59, respectively) and Outside-Biomass (OR=1.78, 1.78, 1.80, respectively) compared to Gas. Pulmonary function tests revealed both Non-Smoker-Biomass and Smoker-Gas individuals to have decreased %predicted-forced expiratory volume in the first second (FEV1) and FEV1/forced vital capacity (FVC) as compared to Non-Smoker-Gas. Pulmonary function tests data was inversely correlated with duration and ePM2.5. The prevalence of airway obstruction was 20% in both Non-Smoker-Biomass and Smoker-Gas subjects. Conclusion: Chronic exposure to biomass combustion is associated with increased prevalence of respiratory symptoms, reduced lung function and development of chronic obstructive pulmonary disease. These effects are associated with the duration and magnitude of exposure and are exacerbated by tobacco smoke. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Objective: To identify spatial patterns in rates of admission for pneumonia among children and relate them to the number of fires reported in the state of Mato Grosso, Brazil. Methods: We conducted an ecological and exploratory study of data from the state of Mato Grosso for 2008 and 2009 on hospital admissions of children aged 0 to 4 years due to pneumonia and on fires in the same period. Admission rates were calculated and choropleth maps were plotted for rates and for fire outbreaks, Moran's I was calculated and the kernel estimator used to identify "hotspots." Data were analyzed using TerraView 3.3.1. Results: Fifteen thousand six hundred eighty-nine children were hospitalized (range zero to 2,315), and there were 161,785 fires (range 7 to 6,454). The average rate of admissions per 1,000 inhabitants was 2.89 (standard deviation [SD] = 5.18) and the number of fires per 1,000 inhabitants was 152.81 (SD = 199.91). Moran's I for the overall number of admissions was I = 0.02 (p = 0.26), the index for rate of admission was I = 0.02 (p = 0.21) and the index for the number of fires was I = 0.31 (p < 0.01). It proved possible to identify four municipalities with elevated rates of admissions for pneumonia. It was also possible to identify two regions with high admission densities. A clustering of fires was evident along what is known as the "arc of deforestation." Conclusions: This study identified municipalities in the state of Mato Grosso that require interventions to reduce rates of admission due to pneumonia and the number fires.
Resumo:
The current study aimed to determine the role of oxidants in cardiac and pulmonary toxicities induced by chronic exposure to ROFA. Eighty Wistar rats were divided into four groups: G1 (10 mu L Saline), G2 (ROFA 50 mu g/10 mu L), G3 (ROFA 250 mu g/10 mu L) and G4 (ROFA 500 mu g/10 mu L). Rats received ROFA by nasotropic instillation for 90 days. After that, they were euthanized and bronchoalveolar lavage (BAL) was performed for total count of leukocytes, protein and lactate dehydrogenase (LDH) determinations. Lungs and heart were removed to measure lipid peroxidation (MDA), catalase (CAT) and superoxide dismutase (SOD) activity. BAL presented an increase in leukocytes count in G4 in comparison to the Saline group (p = 0.019). In lung, MDA level was not modified by ROFA, while CAT was higher in G4 when compared to all other groups (p = 0.013). In heart, G4 presented an increase in MDA (p = 0.016) and CAT (p = 0.027) levels in comparison to G1. The present study demonstrated cardiopulmonary oxidative changes after a chronic ROFA exposure. More specifically, the heart tissue seems to be more susceptible to oxidative effects of long-term exposure to ROFA than the lung.
Resumo:
Clinical evidence has identified the pulmonary circulation as an important target of air pollution. It was previously demonstrated that in vitro exposure to fine particulate matter (aerodynamic diameter <= 2.5 mu m, PM2.5) induces endothelial dysfunction in isolated pulmonary arteries. We aimed to investigate the effects of in vivo exposure to urban concentrated PM2.5 on rat pulmonary artery reactivity and the mechanisms involved. For this, adult Wistar rats were exposed to 2 weeks of concentrated Sao Paulo city air PM2.5 at an accumulated daily dose of approximately 600 mu g/m(3). Pulmonary arteries isolated from PM2.5-exposed animals exhibited impaired endothelium-dependent relaxation to acetylcholine without significant changes in nitric oxide donor response compared to control rats. PM2.5 caused vascular oxidative stress and enhanced protein expression of Cu/Zn- and Mn-superoxide dismutase in the pulmonary artery. Protein expression of endothelial nitric oxide synthase (eNOS) was reduced, while tumor necrosis factor (TNF)-alpha was enhanced by PM2.5 inhalation in pulmonary artery. There was a significant positive correlation between eNOS expression and maximal relaxation response (E-max) to acetylcholine. A negative correlation was found between vascular TNF-alpha expression and E-max to acetylcholine. Plasma cytokine levels, blood cells count and coagulation parameters were similar between control and PM2.5-exposed rats. The present findings showed that in vivo daily exposure to concentrated urban PM2.5 could decrease endothelium-dependent relaxation and eNOS expression on pulmonary arteries associated with local high TNF-alpha level but not systemic pro-inflammatory factors. Taken together, the present results elucidate the mechanisms underlying the trigger of cardiopulmonary diseases induced by urban ambient levels of PM2.5. (C) 2012 Elsevier Ireland Ltd. All rights reserved.