46 resultados para Actin-bindende Proteine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent investigation of the intestine following ischemia and reperfusion (I/R) has revealed that nitric oxide synthase (NOS) neurons are more strongly affected than other neuron types. This implies that NO originating from NOS neurons contributes to neuronal damage. However, there is also evidence of the neuroprotective effects of NO. In this study, we compared the effects of I/R on the intestines of neuronal NOS knockout (nNOS(-/-)) mice and wild-type mice. I/R caused histological damage to the mucosa and muscle and infiltration of neutrophils into the external muscle layers. Damage to the mucosa and muscle was more severe and greater infiltration by neutrophils occurred in the first 24 h in nNOS(-/-) mice. Immunohistochemistry for the contractile protein, alpha-smooth muscle actin, was used to evaluate muscle damage. Smooth muscle actin occurred in the majority of smooth muscle cells in the external musculature of normal mice but was absent from most cells and was reduced in the cytoplasm of other cells following I/R. The loss was greater in nNOS(-/-) mice. Basal contractile activity of the longitudinal muscle and contractile responses to nerve stimulation or a muscarinic agonist were reduced in regions subjected to I/R and the effects were greater in nNOS(-/-) mice. Reductions in responsiveness also occurred in regions of operated mice not subjected to I/R. This is attributed to post-operative ileus that is not significantly affected by knockout of nNOS. The results indicate that deleterious effects are greater in regions subjected to I/R in mice lacking nNOS compared with normal mice, implying that NO produced by nNOS has protective effects that outweigh any damaging effect of this free radical produced by enteric neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The preservation of biological samples at a low temperature is important for later biochemical and/or histological analyses. However, the molecular viability of thawed samples has not been studied sufficiently in depth. The present study was undertaken to evaluate the viability of intact tissues, tissue homogenates, and isolated total RNA after defrosting for more than twenty-four hours. METHODS: The molecular viability of the thawed samples (n = 82) was assessed using the A260/A280 ratio, the RNA concentration, the RNA integrity, the level of intact mRNA determined by reverse transcriptase polymerase chain reaction, the protein level determined by Western blotting, and an examination of the histological structure. RESULTS: The integrity of the total RNA was not preserved in the thawed intact tissue, but the RNA integrity and level of mRNA were perfectly preserved in isolated defrosted samples of total RNA. Additionally, the level of beta-actin protein was preserved in both thawed intact tissue and homogenates. CONCLUSION: Isolated total RNA does not undergo degradation due to thawing for at least 24 hours, and it is recommended to isolate the total RNA as soon as possible after tissue collection. Moreover, the protein level is preserved in defrosted tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Larval tissues undergo programmed cell death (PCD) during Drosophila metamorphosis. PCD is triggered in a stage and tissue-specific fashion in response to ecdysone pulses. The understanding of how ecdysone induces the stage and tissue-specificity of cell death remains obscure. Several steroid-regulated primary response genes have been shown to act as key regulators of cellular responses to ecdysone by inducing a cascade of transcriptional regulation of late responsive genes. In this article, the authors identify Fhos as a gene that is required for Drosophila larval salivary gland destruction. Animals with a P-element mutation in Fhos possess persistent larval salivary glands, and precise excisions of this P-element insertion resulted in reversion of this salivary gland mutant phenotype. Fhos encodes the Drosophila homolog of mammalian Formin Fhos. Fhos is differentially transcribed during development and responds to ecdysone in a method that is similar to other cell death genes. Similarly to what has been shown for its mammalian counterpart, FHOS protein is translocated to the nucleus at later stages of cell death. Fhos mutants posses disrupted actin cytoskeleton dynamics in persistent salivary glands. Together, our data indicate that Fhos is a new ecdysone-regulated gene that is crucial for changes in the actin cytoskeleton during salivary gland elimination in Drosophila. genesis 50:672684, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One drawback of in vitro cell culturing is the dedifferentiation process that cells experience. Smooth muscle cells (SMC) also change molecularly and morphologically with long term culture. The main objective of this study was to evaluate if culture passages interfere in vascular SMC mechanical behavior. SMC were obtained from five different porcine arterial beds. Optical magnetic twisting cytometry (OMTC) was used to characterize mechanically vascular SMC from different cultures in distinct passages and confocal microscopy/western blotting, to evaluate cytoskeleton and extracellular matrix proteins. We found that vascular SMC rigidity or viscoelastic complex modulus (G) decreases with progression of passages. A statistically significant negative correlation between G and passage was found in four of our five cultures studied. Phalloidin-stained SMC from higher passages exhibited lower mean signal intensity per cell (confocal microscopy) and quantitative western blotting analysis showed a decrease in collagen I content throughout passages. We concluded that vascular SMC progressively lose their stiffness with serial culture passaging. Thus, limiting the number of passages is essential for any experiment measuring viscoelastic properties of SMC in culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Chronic allograft vasculopathy (CAV) is an important cause of graft loss. Considering the immune inflammatory events involved in the development of CAV, therapeutic approaches to target this process are of relevance. Human amniotic fluid derived stem cells (hAFSCs), a class of fetal, pluripotent stem cells with intermediate characteristics between embryonic and adult stem cells, display immunomodulatory properties. hAFSCs express mesenchymal and embryonic markers, show high proliferation rates; however, they do not induce tumor formation, and their use does not raise ethical issues. Thus, we sought to investigate the effect of hAFSC on CAV in a model of aorta transplantation. Methods. Orthotopic aorta transplantation was performed using Fisher (F344) rats as donors and Lewis rats as recipients. Rats were divided into three groups: syngeneic (SYNG), untreated F344 receiving aorta from F344 (n = 8); allogeneic (ALLO), Lewis rats receiving allogeneic aorta from F344 (n = 8); and ALLO + hAFSC, ALLO rats treated with hAFSC (10(6) cells; n = 8). Histological analysis and immunohistochemistry were performed 30 days posttransplantation. Results. The ALLO group developed a robust aortic neointimal formation (208.7 +/- 25.4 gm) accompanied by a significant high number of ED1(+) (4845 +/- 841 cells/mm(2)) and CD43(+) cells (4064 +/- 563 cells/mm(2)), and enhanced expression of a-smooth muscle actin in the neointima (25 +/- 6%). Treatment with hAFSC diminished neointimal thickness (180.7 +/- 23.7 mu m) and induced a significant decrease of ED1(+) (1100 +/- 276 cells/mm(2)), CD43(+) cells (1080 +/- 309 cells/mu m(2)), and alpha-smooth muscle actin expression 8 +/- 3% in the neointima. Conclusions. These preliminary results showed that hAFSC suppressed inflammation and myofibroblast migration to the intima, which may contribute to ameliorate vascular changes in CAV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Mechanisms linking behavioral stress and inflammation are poorly understood, mainly in distal lung tissue. Objective: We have investigated whether the forced swim stress (FS) could modulate lung tissue mechanics, iNOS, cytokines, oxidative stress activation, eosinophilic recruitment, and remodeling in guinea pigs (GP) with chronic pulmonary inflammation. Methods: The GP were exposed to ovalbumin or saline aerosols (2x/wk/4wks, OVA, and SAL). Twenty-four hours after the 4th inhalation, the GP were submitted to the FS protocol (5x/wk/2wks, SAL-S, and OVA-S). Seventy-two hours after the 7th inhalation, lung strips were cut and tissue resistance (Rt) and elastance (Et) were obtained (at baseline and after OVA and Ach challenge). Strips were submitted to histopathological evaluation. Results: The adrenals' weight, the serum cortisol, and the catecholamines were measured. There was an increase in IL-2, IL-5, IL-13, IFN-gamma, iNOS, 8-iso-PGF2 alpha, and in %Rt and %Et after Ach challenge in the SAL-S group compared to the SAL one. The OVA-S group has had an increase in %Rt and %Et after the OVA challenge, in %Et after the Ach and in IL-4, 8-iso-PGF2 alpha, and actin compared to the OVA. Adrenal weight and cortisol serum were increased in stressed animals compared to nonstressed ones, and the catecholamines were unaltered. Conclusion & clinical relevance: Repeated stress has increased distal lung constriction, which was associated with an increase of actin, IL-4, and 8-iso-PGF2 alpha levels. Stress has also induced an activation of iNOS, cytokines, and oxidative stress pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ehrlichia canis, etiologic agent of Canine Monocytic Ehrlichiosis, is an obligatory intracellular bacterium that parasitizes monocytes and macrophages. In this study we analyzed the role of the cytoskeleton specifically actin microfilaments and microtubules, components of inositol phospholipid signaling pathway such as phospholipase C (PLC), protein kinase (PTK) and calcium channels as well as the role of iron in the E. canis proliferation in DH82 cells. Different inhibitory compounds were used for each component: Cytochalasin D (inhibits actin polymerization), Nocodazole (inhibits microtubule polymerization), Neomycin (PLC inhibitor), Genistein (PTK inhibitor), Verapamil (calcium channel blocker) and Deferoxamine (iron chelator). We observed a significant decrease in the total number of bacteria in infected cells treated suggesting that these cellular components analized are essentials to E. canis proliferation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 mu M) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the "housekeeping" a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein L-plastin was altered in cells treated with 50 mu M enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in post-translational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crotalus durissus terrificus snake venom (CdtV) has long-lasting anti-inflammatory properties and inhibits the spreading and phagocytic activity of macrophages. Crotoxin (CTX), the main component of CdtV, is responsible for these effects. Considering the role of neutrophils in the inflammatory response and the lack of information about the effect of CdtV on neutrophils, the aim of this study was to investigate the effect of CdtV and CTX on two functions of neutrophils, namely phagocytosis and production of reactive oxygen species, and on the intracellular signaling involved in phagocytosis, particularly on tyrosine phosphorylation and rearrangements of the actin cytoskeleton. Our results showed that the incubation of neutrophils with CdtV or CTX, at different concentrations, or the subcutaneous injection of CdtV or CTX in rats two hours or one, four or 14 days before or one hour after the induction of inflammation inhibited the phagocytic activity of neutrophils. Furthermore, these in vitro and in vivo effects were associated with CdtV and CTX inhibition of tyrosine phosphorylation and consequently actin polymerization. Despite the inhibitory effect on phagocytosis, this study demonstrated that CdtV and CTX did not alter the production of the main reactive oxygen species. Therefore, this study characterized, for the first time, the actions of CdtV on neutrophils and demonstrated that CTX induces a long-lasting inhibition of tyrosine phosphorylation and consequently phagocytosis. We suggest that CTX represents a potential natural product in controlling inflammatory diseases, since a single dose exerts a long-lasting effect on intracellular signaling involved in phagocytosis by neutrophils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study examined the role of PLD2 in the maintenance of mast cell structure. Phospholipase D (PLD) catalyzes hydrolysis of phosphatidylcholine to produce choline and phosphatidic acid (PA). PLD has two isoforms, PLD1 and PLD2, which vary in expression and localization depending on the cell type. The mast cell line RBL-2H3 was transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2. The results of this study show that PLD2CI cells have a distinct star-shaped morphology, whereas PLD2CA and RBL-2H3 cells are spindle shaped. In PLD2CI cells, the Golgi complex was also disorganized with dilated cisternae, and more Golgi-associated vesicles were present as compared with the PLD2CA and RBL-2H3 cells. Treatment with exogenous PA led to the restoration of the wild-type Golgi complex phenotype in PLD2CI cells. Conversely, treatment of RBL-2H3 and PLD2CA cells with 1% 1-Butanol led to a disruption of the Golgi complex. The distribution of acidic compartments, including secretory granules and lysosomes, was also modified in PLD2CI cells, where they concentrated in the perinuclear region. These results suggest that the PA produced by PLD2 plays an important role in regulating cell morphology in mast cells. (J Histochem Cytochem 60:386-396, 2012)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low efficiency of gene transfer is a recurrent problem in DNA vaccine development and gene therapy studies using non-viral vectors such as plasmid DNA (pDNA). This is mainly due to the fact that during their traffic to the target cell's nuclei, plasmid vectors must overcome a series of physical, enzymatic and diffusional barriers. The main objective of this work is the development of recombinant proteins specifically designed for pDNA delivery, which take advantage of molecular motors like dynein, for the transport of cargos from the periphery to the centrosome of mammalian cells. A DNA binding sequence was fused to the N-terminus of the recombinant human dynein light chain LC8. Expression studies indicated that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. As expected, gel permeation assays found the purified protein mainly present as dimers, the functional oligomeric state of LC8. Gel retardation assays and atomic force microscopy proved the ability of the fusion protein to interact and condense pDNA. Zeta potential measurements indicated that LC8 with DNA binding domain (LD4) has an enhanced capacity to interact and condense pDNA, generating positively charged complexes. Transfection of cultured HeLa cells confirmed the ability of the LD4 to facilitate pDNA uptake and indicate the involvement of the retrograde transport in the intracellular trafficking of pDNA: LD4 complexes. Finally, cytotoxicity studies demonstrated a very low toxicity of the fusion protein vector, indicating the potential for in vivo applications. The study presented here is part of an effort to develop new modular shuttle proteins able to take advantage of strategies used by viruses to infect mammalian cells, aiming to provide new tools for gene therapy and DNA vaccination studies. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Cardiac remodeling in uremia is characterized by left ventricular hypertrophy, interstitial fibrosis and microvascular disease. Cardiovascular disease is the leading cause of death in uremic patients, but coronary events alone are not the prevalent cause, sudden death and heart failure are. We studied the cardiac remodeling in experimental uremia, evaluating the isolated effect of parathyroid hormone (PTH) and phosphorus. Methods. Wistar rats were submitted to parathyroidectomy (PTx) and 5/6 nephrectomy (Nx); they also received vehicle (V) and PTH at normal (nPTH) or high (hPTH) doses. They were fed with a poor-phosphorus (pP) or rich-phosphorus (rP) diet and were divided into the following groups: 'Sham': G1 (V + normal-phosphorus diet (np)) and 'Nx + PTx': G2 (nPTH + pP), G3 (nPTH + rP), G4 (hPTH + pP) and G5 (hPTH + rP). After 8 weeks, biochemical analysis, myocardium morphometry and arteriolar morphological analysis were performed. In addition, using immunohistochemical analysis, we evaluated angiotensin II, alpha-actin, transforming growth factor-beta (TGF-beta) and nitrotyrosine, as well as fibroblast growth factor-23 (FGF-23), fibroblast growth factor receptor-1 (FGFR-1) and runt-related transcription factor-2 (Runx-2) expression. Results. Nx animals presented higher serum creatinine levels as well as arterial hypertension. Higher PTH levels were associated with myocardial hypertrophy and fibrosis as well as a higher coronary lesion score. High PTH animals also presented a higher myocardial expression of TGF-beta, angiotensin II, FGF-23 and nitrotyrosine and a lower expression of alpha-actin. Phosphorus overload was associated with higher serum FGF-23 levels and Runx-2, as well as myocardial hypertrophy. FGFR-1 was positive in the cardiomyocytes of all groups as well as in calcified coronaries of G4 and G5 whereas Runx-2 was positive in G3, G4 and G5. Conclusion. In uremia, PTH and phosphorus overload are both independently associated with major changes related to the cardiac remodeling process, emphasizing the need for a better control of these factors in chronic kidney disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies have pointed out the immunomodulatory properties of the Salivary Gland Extract (SGE) from Lutzomyia longipalpis. We aimed to identify the SGE component (s) responsible for its effect on ovalbumin (OVA)-induced neutrophil migration (NM) and to evaluate the effect of SGE and components in the antigen-induced arthritis (AIA) model. We tested the anti-arthritic activities of SGE and the recombinant LJM111 salivary protein (rLJM111) by measuring the mechanical hypernociception and the NM into synovial cavity. Furthermore, we measured IL-17, TNF-alpha and IFN-gamma released by lymph nodes cells stimulated with mBSA or anti-CD3 using enzyme-linked immunosorbent assay (ELISA). Additionally, we tested the effect of SGE and rLJM111 on co-stimulatory molecules expression (MHC-II and CD-86) by flow cytometry. TNF-alpha and IL-10 production (ELISA) of bone marrow-derived dendritic cells (BMDCs) stimulated with LPS, chemotaxis and actin polymerization from neutrophils. Besides, the effect of SGE on CXCR2 and GRK-2 expression on neutrophils was investigated. We identified one plasmid expressing the protein LJM111 that prevented NM in OVA-challenged immunized mice. Furthermore, both SGE and rLJM111 inhibited NM and pain sensitivity in AIA and reduced IL-17, TNF-alpha and IFN-gamma. SGE and rLJM111 also reduced MHC-II and CD-86 expression and TNF-alpha whereas increased IL-10 release by LPS-stimulated BMDCs. SGE, but not LJM 111, inhibited neutrophils chemotaxis and actin polymerization. Additionally, SGE reduced neutrophil CXCR2 expression and increased GRK-2. Thus, rLJM111 is partially responsible for SGE mechanisms by diminishing DC function and maturation but not chemoattraction of neutrophils. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blood pressure variability (BPV) and baroreflex dysfunction may contribute to end-organ damage process. We investigated the effects of baroreceptor deficit (10 weeks after sinoaortic denervation - SAD) on hemodynamic alterations, cardiac and pulmonary remodeling. Cardiac function and morphology of male Wistar intact rats (C) and SAD rats (SAD) (n = 8/group) were assessed by echocardiography and collagen quantification. BP was directly recorded. Ventricular hypertrophy was quantified by the ratio of left ventricular weight (LVW) and right ventricular weight (RVW) to body weight (BW). BPV was quantified in the time and frequency domains. The atrial natriuretic peptide (ANP), alpha-skeletal actin (alpha-skelectal), collagen type I and type III genes mRNA expression were evaluated by RT-PCR. SAD did not change BP, but increased BPV (11 +/- 0.49 vs. 5 +/- 0.3 mm Hg). As expected, baroreflex was reduced in SAD. Pulmonary artery acceleration time was reduced in SAD. In addition, SAD impaired diastolic function in both LV (6.8 +/- 0.26 vs. 5.02 +/- 0.21 mm Hg) and RV (5.1 +/- 0.21 vs. 4.2 +/- 0.12 mm Hg). SAD increased LVW/BW in 9% and RVW/BW in 20%, and augmented total collagen (3.8-fold in LV, 2.7-fold in RV, and 3.35-fold in pulmonary artery). Also, SAD increased type I (similar to 6-fold) and III (similar to 5-fold) collagen gene expression. Denervation increased ANP expression in LV (75%), in RV (74%) and increased a-skelectal expression in LV (300%) and in RV (546%). Baroreflex function impairment by SAD, despite not changing BP, induced important adjustments in cardiac structure and pulmonary hypertension. These changes may indicate that isolated baroreflex dysfunction can modulate target tissue damage. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global warming is a reality and its effects have been widely studied. However, the consequences for marine invertebrates remain poorly understood. Thus, the present study proposed to evaluate the effect of elevated temperature on the innate immune system of Antarctic sea urchin Sterechinus neumayeri. Sea urchins were collected nearby Brazilian Antarctic Station "Comandante Ferraz" and exposed to 0 (control), 2 and 4A degrees C for periods of 48 h, 2, 7 and 14 days. After the experimental periods, coelomic fluid was collected in order to perform the following analyses: coelomocytes differential counting, phagocytic response, adhesion and spreading coelomocytes assay, intranuclear iron crystalloid and ultra structural analysis of coelomocytes. The red sphere cell was considered a biomarker for heat stress, as they increased in acute stress. Besides that, a significant increase in phagocytic indexes was observed at 2A degrees C coinciding with a significant increase of intranuclear iron crystalloid at the same temperature and same time period. Furthermore, significant alterations in cell adhesion and spreading were observed in elevated temperatures. The ultra structural analysis of coelomocytes showed no significant difference across treatments. This was the first time that innate immune response alterations were observed in response to elevated temperature in a Polar echinoid.