40 resultados para skin pigmentation
Resumo:
Objective: The purpose of this study was to investigate the rat skin penetration abilities of two commercially available low-level laser therapy (LLLT) devices during 150 sec of irradiation. Background data: Effective LLLT irradiation typically lasts from 20 sec up to a few minutes, but the LLLT time-profiles for skin penetration of light energy have not yet been investigated. Materials and methods: Sixty-two skin flaps overlaying rat's gastrocnemius muscles were harvested and immediately irradiated with LLLT devices. Irradiation was performed either with a 810 nm, 200mW continuous wave laser, or with a 904 nm, 60mW superpulsed laser, and the amount of penetrating light energy was measured by an optical power meter and registered at seven time points (range, 1-150 sec). Results: With the continuous wave 810nm laser probe in skin contact, the amount of penetrating light energy was stable at similar to 20% (SEM +/- 0.6) of the initial optical output during 150 sec irradiation. However, irradiation with the superpulsed 904 nm, 60mW laser showed a linear increase in penetrating energy from 38% (SEM +/- 1.4) to 58% (SEM +/- 3.5) during 150 sec of exposure. The skin penetration abilities were significantly different (p < 0.01) between the two lasers at all measured time points. Conclusions: LLLT irradiation through rat skin leaves sufficient subdermal light energy to influence pathological processes and tissue repair. The finding that superpulsed 904nm LLLT light energy penetrates 2-3 easier through the rat skin barrier than 810nm continuous wave LLLT, corresponds well with results of LLLT dose analyses in systematic reviews of LLLT in musculoskeletal disorders. This may explain why the differentiation between these laser types has been needed in the clinical dosage recommendations of World Association for Laser Therapy.
Resumo:
Nitric oxide (NO) is produced by various mammalian cells and plays a variety of regulatory roles in normal physiology and in pathological processes. This article provides evidence regarding the participation of NO in UVB-induced skin lesions and in the modulation of skin cell proliferation following UVB skin irradiation. Hairless mice were subjected to UVB irradiation for 3 hours and the skin evaluated immediately, 6 and 24 hours postirradiation. The skin lipid peroxidation, and NO levels evaluated by chemiluminescence and inducible nitric oxide synthase (iNOS) and nitrotyrosine immunolabelling increased significantly 24 hours after irradiation and decreased under the treatment with aminoguanidine (AG). On the other hand, cell proliferation markers, PCNA and VEGF showed a strong labelling index when AG was used. The data indicate that NO mediates, at least in part, the lipid peroxidation and protein nitration and also promotes the down regulation of factors involved in cell proliferation. This work shows that the NO plays an important role in the oxidative stress damage and on modulation of cell proliferation pathways in UVB irradiated skin.
Resumo:
The course of leprosy depends of the host immune response which ranges from the lepromatous pole (LL) to the tuberculoid pole (TT). A comparative study was conducted in 60 patients with the LL and TT The results showed a mean expression of TGF-beta of 339 +/- 99.4 cells/field for TT and of 519.2 +/- 68.2 cells/field for LL. Frequency of apoptosis was 6.3 +/- 1.8 in TT and 14.0 +/- 6.1 in LL. A correlation (p = 0.0251) between TGF-beta and caspase-3 in the LL was found. This finding indicates a role of TGF-beta and apoptosis in the immune response in leprosy. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil.
Resumo:
Twenty-eight diabetics presenting with acute Charcot foot were immobilized and the temperature difference between limbs measured at each month. All patients had monthly follow-up visits for a year and the relapse rate was zero. We found that skin temperature is a good parameter to ensure safe immobilization withdrawal. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
OBJECTIVES: FTY720 modulates CD4(+)T cells by the augmentation of regulatory T cell activity, secretion of suppressive cytokines and suppression of IL-17 secretion by Th17 cells. To further understand the process of graft rejection/acceptance, we evaluated skin allograft survival and associated events after FTY720 treatment. METHODS: F1 mice (C57BL/6xBALB/c) and C57BL/6 mice were used as donors for and recipients of skin transplantation, respectively. The recipients were transplanted and either not treated or treated with FTY720 by gavage for 21 days to evaluate the allograft survival. In another set of experiments, the immunological evaluation was performed five days post-transplantation. The spleens, axillary lymph nodes and skin allografts of the recipient mice were harvested for phenotyping (flow cytometry), gene expression (real-time PCR) and cytokine (Bio-Plex) analysis. RESULTS: The FTY720 treatment significantly increased skin allograft survival, reduced the number of cells in the lymph nodes and decreased the percentage of Tregs at this site in the C57BL/6 recipients. Moreover, the treatment reduced the number of graft-infiltrating cells and the percentage of CD4(+) graft-infiltrating cells. The cytokine analysis (splenocytes) showed decreased levels of IL-10, IL-6 and IL-17 in the FTY720-treated mice. We also observed a decrease in the IL-10, IL-6 and IL-23 mRNA levels, as well as an increase in the IL-27 mRNA levels, in the splenocytes of the treated group. The FTY720-treated mice exhibited increased mRNA levels of IL-10, IL-27 and IL-23 in the skin graft. CONCLUSIONS: Our results demonstrated prolonged but not indefinite skin allograft survival by FTY720 treatment. This finding indicates that the drug did not prevent the imbalance between Tr1 and Th17 cells in the graft that led to rejection.
Resumo:
Topical photodynamic therapy (PDT) has been applied to almost all types of nonmelanoma skin cancer and numerous superficial benign skin disorders. Strategies to improve the accumulation of photosensitizer in the skin have been studied in recent years. Although the hydrophilic phthalocyanine zinc compound, zinc phthalocyanine tetrasulfonate (ZnPcSO4) has shown high photodynamic efficiency and reduced phototoxic side effects in the treatment of brain tumors and eye conditions, its use in topical skin treatment is currently limited by its poor skin penetration. In this study, nanodispersions of monoolein (MO)-based liquid crystalline phases were studied for their ability to increase ZnPcSO4 uptake by the skin. Lamellar, hexagonal and cubic crystalline phases were prepared and identified by polarizing light microscopy, and the nanodispersions were analyzed by dynamic light scattering. In vitro skin penetration studies were performed using a Franz's cell apparatus, and the skin uptake was evaluated in vivo in hairless mice. Aqueous dispersions of cubic and hexagonal phases showed particles of nanometer size, approximately 224 +/- 10 nm and 188 +/- 10 nm, respectively. In vitro skin retention experiments revealed higher fluorescence from the ZnPcSO4 in deeper skin layers when this photosensitizer was loaded in the hexagonal nanodispersion system when compared to both the cubic phase nanoparticles and the bulk crystalline phases (lamellar, cubic and hexagonal). The hexagonal nanodispersion showed a similar penetration behavior in animal tests. These results are important findings, suggesting the development of MO liquid crystal nanodispersions as potential delivery systems to enhance the efficacy of topical PDT.
Resumo:
Background: Over the last century the incidence of cutaneous melanoma has increased worldwide, a trend that has also been observed in Brazil. The identified risk factors for melanoma include the pattern of sun exposure, family history, and certain phenotypic features. In addition, the incidence of melanoma might be influenced by ethnicity. Like many countries, Brazil has high immigration rates and consequently a heterogenous population. However, Brazil is unique among such countries in that the ethnic heterogeneity of its population is primarily attributable to admixture. This study aimed to evaluate the contribution of European ethnicity to the risk of cutaneous melanoma in Brazil. Methodology/Principal Findings: We carried out a hospital-based case-control study in the metropolitan area of Sao Paulo, Brazil. We evaluated 424 hospitalized patients (202 melanoma patients and 222 control patients) regarding phenotypic features, sun exposure, and number of grandparents born in Europe. Through multivariate logistic regression analysis, we found the following variables to be independently associated with melanoma: grandparents born in Europe-Spain (OR = 3.01, 95% CI: 1.03-8.77), Italy (OR = 3.47, 95% CI: 1.41-8.57), a Germanic/Slavic country (OR = 3.06, 95% CI: 1.05-8.93), or >= 2 European countries (OR = 2.82, 95% CI: 1.06-7.47); eye color-light brown (OR = 1.99, 95% CI: 1.14-3.84) and green/blue (OR = 4.62; 95% CI 2.22-9.58); pigmented lesion removal (OR = 3.78; 95% CI: 2.21-6.49); no lifetime sunscreen use (OR = 3.08; 95% CI: 1.03-9.22); and lifetime severe sunburn (OR = 1.81; 95% CI: 1.03-3.19). Conclusions: Our results indicate that European ancestry is a risk factor for cutaneous melanoma. Such risk appears to be related not only to skin type, eye color, and tanning capacity but also to others specific characteristics of European populations introduced in the New World by European immigrants.
Resumo:
To assess topical delivery studies of glycoalkaloids, an analytical method by HPLC-UV was developed and validated for the determination of solasonine (SN) and solamargine (SM) in different skin layers, as well as in a topical formulation. The method was linear within the ranges 0.86 to 990.00 mu g/mL for SN and 1.74 to 1000.00 mu g/mL for SM (r = 0.9996). Moreover, the recoveries for both glycoalkaloids were higher than 88.94 and 93.23% from skin samples and topical formulation, respectively. The method developed is reliable and suitable for topical delivery skin studies and for determining the content of SN and SM in topical formulations.
Resumo:
Objective: Evaluation of the antimicrobial effect of skin disinfection techniques is essential to avoid the transmission of infectious agents during blood transfusion. The aim of this study was to examine the effectiveness of two methods of arm skin disinfection used in blood donors at a Hemotherapy Center in Brazil that represents an important centre for distributing haemocomponents to many cities in the country. Methods: Two skin disinfection techniques in 50 blood donors were evaluated. For the first arm, 10% povidone-iodine/two-stage technique was used. On the opposite arm, 0.5% chlorhexidine digluconate alcohol solution/one-stage technique was used. The swabs were seeded on three culture media: blood agar, mannitol salt agar and Mac Conkey agar. Automated bacterial classification based on biochemical tests/specific substrates was performed. Donor characteristics were collected using the computerised system of the Hemotherapy Center. Results: We found that microbial reduction was significantly higher for 10% povidone-iodine technique (98.57-98.87%) when compared with 0.5% chlorhexidine technique (94.38-95.06%). The species Leuconostoc mesenteroides and Staphylococcus hominis showed resistance to both disinfection techniques. We did not find statistically significant relationships between donor characteristics and microbial reduction. Conclusions: Arm skin disinfection with 10% povidone-iodine produced better antimicrobial activity. We must acknowledge that 10% povidone-iodine technique has the limitation of being a two-stage method. However, prevention of adverse events due to bacterial contamination and transfusion reactions should be prioritised. Production of hypoallergenic and stronger antiseptics that allowed a safe one-stage disinfection technique should be encouraged in health systems, not only in Brazil but also around the world.
Resumo:
Despite the efficacy of topical retinoic acid, skin reactions have limited its acceptance by patients. Other retinoids, like Retinyl Palmitate (RP), are considerably less irritating, but they are also less effective. In order to enhance the performance of retinoids, in this work RP has been added to cosmetic formulations such as nanoemulsions, which can provide better penetration of this active substance. Because the vehicle can directly influence the skin penetration and the effectiveness of RP, two skin care products containing 5000 UI RP have been developed and investigated, namely a nanoemulsifying system and a classic gel cream. In vitro penetration tests were conducted by using Franz diffusion cells and placing porcine ear skin and iso-propanol in the receptor compartment. The RP concentration in the skin layers was analyzed by high performance liquid chromatography, and a Zeta-Sizer system was employed for measurement of the the particle size distribution. The penetration tests revealed a large difference between the vehicles in terms of the RP concentrations in each skin layer. The classic gel cream furnished better RP penetration in both the stratum corneum and the epidermis without stratum corneum + dermis, as compared to the self-nanoemulsifying system. The two vehicles displayed the same particle size (between 100 and 200 nm). Better understanding of RP skin delivery using different vehicles has been acquired, and the importance of evaluating the efficacy of nanocosmetics. Results from the present study should also contribute to the assessment of commercial self-nanoemulsifying systems with potential application in the facile production of nanoemulsions.
Resumo:
The objective of this study was to compare patients with obsessive-compulsive disorder (OCD) associated with pathologic skin picking (PSP) and/or trichotillomania, and patients with OCD without such comorbidities, for demographic and clinical characteristics. We assessed 901 individuals with a primary diagnosis of OCD, using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) Axis I disorders. Diagnoses of PSP and trichotillomania were made in 16.3% and 4.9% of the sample, respectively. After the logistic regression analysis, the following factors retained an association with OCD-PSP/trichotillomania: younger (odds ratio [OR] = 0.979; P = .047), younger at the onset of compulsive symptoms (OR = 0.941; P = .007), woman (OR = 2.538; P < .001), with a higher level of education (OR = 1.055; P = .025), and with comorbid body dysmorphic disorder (OR = 2.363; P = .004). These findings support the idea that OCD accompanied by PSP/trichotillomania characterizes a specific subgroup. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
A new trend in cosmetic formulations is the use of biotechnological raw materials as the polysaccharides from Klebsiella pneumoniae, which are supposed to enhance cell renewal, improve skin hydration and micro-relief. Botanical extracts of Myrtus communis leaves contain different sugars, which may provide the same benefits. Thus, the objective of this study was to evaluate through objective and subjective analysis the immediate and long-term effects of cosmetic formulations containing polysaccharides biotechnologically-originated and / or the ones contained in Myrtus communis extracts. Three polysaccharide-based and placebo formulations were applied on the forearm skin of 40 volunteers. Skin hydration, transepidermal water loss (TEWL), viscoelasticity and skin micro-relief measurements were made before and 2 hours after a single application and after 15 and 30 day-periods of daily applications. Answers to a questionnaire about perceptions of formulation cosmetic features constituted the subjective analysis. All polysaccharide-based formulations enhanced skin hydration. Formulations with isolated or combined active substances improved skin barrier function as compared to placebo, in the short and long term studies. Formulations containing Myrtus communis extracts had the highest acceptance. Results suggest that daily use of formulations containing these substances is important for protection of the skin barrier function.
Resumo:
Objective: This study aimed to investigate the effect of 830 and 670 nm diode laser on the viability of random skin flaps in rats. Background data: Low-level laser therapy (LLLT) has been reported to be successful in stimulating the formation of new blood vessels and reducing the inflammatory process after injury. However, the efficiency of such treatment remains uncertain, and there is also some controversy regarding the efficacy of different wavelengths currently on the market. Materials and methods: Thirty Wistar rats were used and divided into three groups, with 10 rats in each. A random skin flap was raised on the dorsum of each animal. Group 1 was the control group, group 2 received 830 nm laser radiations, and group 3 was submitted to 670 nm laser radiation (power density = 0.5 mW/cm(2)). The animals underwent laser therapy with 36 J/cm(2) energy density (total energy = 2.52 J and 72 sec per session) immediately after surgery and on the 4 subsequent days. The application site of laser radiation was one point at 2.5 cm from the flap's cranial base. The percentage of skin flap necrosis area was calculated on the 7th postoperative day using the paper template method. A skin sample was collected immediately after to determine the vascular endothelial growth factor (VEGF) expression and the epidermal cell proliferation index (KiD67). Results: Statistically significant differences were found among the percentages of necrosis, with higher values observed in group 1 compared with groups 2 and 3. No statistically significant differences were found among these groups using the paper template method. Group 3 presented the highest mean number of blood vessels expressing VEGF and of cells in the proliferative phase when compared with groups 1 and 2. Conclusions: LLLT was effective in increasing random skin flap viability in rats. The 670 nm laser presented more satisfactory results than the 830 nm laser.
Resumo:
Objective: Raman spectroscopy has been employed to discriminate between malignant (basal cell carcinoma [BCC] and melanoma [MEL]) and normal (N) skin tissues in vitro, aimed at developing a method for cancer diagnosis. Background data: Raman spectroscopy is an analytical tool that could be used to diagnose skin cancer rapidly and noninvasively. Methods: Skin biopsy fragments of similar to 2 mm(2) from excisional surgeries were scanned through a Raman spectrometer (830 nm excitation wavelength, 50 to 200 mW of power, and 20 sec exposure time) coupled to a fiber optic Raman probe. Principal component analysis (PCA) and Euclidean distance were employed to develop a discrimination model to classify samples according to histopathology. In this model, we used a set of 145 spectra from N (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues. Results: We demonstrated that principal components (PCs) 1 to 4 accounted for 95.4% of all spectral variation. These PCs have been spectrally correlated to the biochemicals present in tissues, such as proteins, lipids, and melanin. The scores of PC2 and PC3 revealed statistically significant differences among N, BCC, and MEL (ANOVA, p < 0.05) and were used in the discrimination model. A total of 28 out of 30 spectra were correctly diagnosed as N, 93 out of 96 as BCC, and 13 out of 19 as MEL, with an overall accuracy of 92.4%. Conclusions: This discrimination model based on PCA and Euclidean distance could differentiate N from malignant (BCC and MEL) with high sensitivity and specificity.