16 resultados para high strength
Resumo:
This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves. Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds employed side-grooved, clamped SE(T) specimens and shallow crack bend SE(B) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using the single specimen technique. Recently developed compliance functions and η-factors applicable for SE(T) and SE(B) fracture specimens with homogeneous material and overmatched welds are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records.
Resumo:
This study performed an exploratory analysis of the anthropometrical and morphological muscle variables related to the one-repetition maximum (1RM) performance. In addition, the capacity of these variables to predict the force production was analyzed. 50 active males were submitted to the experimental procedures: vastus lateralis muscle biopsy, quadriceps magnetic resonance imaging, body mass assessment and 1RM test in the leg-press exercise. K-means cluster analysis was performed after obtaining the body mass, sum of the left and right quadriceps muscle cross-sectional area (Sigma CSA), percentage of the type II fibers and the 1RM performance. The number of clusters was defined a priori and then were labeled as high strength performance (HSP1RM) group and low strength performance (LSP1RM) group. Stepwise multiple regressions were performed by means of body mass, Sigma CSA, percentage of the type II fibers and clusters as predictors' variables and 1RM performance as response variable. The clusters mean +/- SD were: 292.8 +/- 52.1 kg, 84.7 +/- 17.9 kg, 19249.7 +/- 1645.5 mm(2) and 50.8 +/- 7.2% for the HSP1RM and 254.0 +/- 51.1 kg, 69.2 +/- 8.1 kg, 15483.1 +/- 1 104.8 mm(2) and 51.7 +/- 6.2 %, for the LSP1RM in the 1RM, body mass, Sigma CSA and muscle fiber type II percentage, respectively. The most important variable in the clusters division was the Sigma CSA. In addition, the Sigma CSA and muscle fiber type II percentage explained the variance in the 1RM performance (Adj R-2 = 0.35, p = 0.0001) for all participants and for the LSP1RM (Adj R-2 = 0.25, p = 0.002). For the HSP1RM, only the Sigma CSA was entered in the model and showed the highest capacity to explain the variance in the 1RM performance (Adj R-2 = 0.38, p = 0.01). As a conclusion, the muscle CSA was the most relevant variable to predict force production in individuals with no strength training background.
Resumo:
Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP). This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers) to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.
Resumo:
In recent years, different beta titanium alloys have been developed for biomedical applications with a combination of mechanical properties including a low Young's modulus, high strength, fatigue resistance and good ductility with excellent corrosion resistance. From this perspective, a new metastable beta titanium Ti-12Mo-3Nb alloy was developed with the replacement of both vanadium and aluminum from the traditional Ti-6Al-4V alloy. This paper presents the microstructure, mechanical properties and corrosion resistance of the Ti-12Mo-3Nb alloy heat-treated at 950 degrees C for 1 h. The material was characterized by X-ray diffraction and by scanning electron microscopy. Tensile tests were carried out at room temperature. Corrosion tests were performed using Ringer's solution at 25 degrees C. The results showed that this alloy could potentially be used for biomedical purposes due to its good mechanical properties and spontaneous passivation. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
In recent years, structural composites manufactured by carbon fiber/epoxy laminates have been employed in large scale in aircraft industries. These structures require high strength under severe temperature changes of -56° until 80 °C. Regarding this scenario, the aim of this research was to reproduce thermal stress in the laminate plate developed by temperature changes and tracking possible cumulative damages on the laminate using ultrasonic C-scan inspection. The evaluation was based on attenuation signals and the C-scan map of the composite plate. The carbon fiber/epoxy plain weave laminate underwent temperatures of -60° to 80 °C, kept during 10 minutes and repeated for 1000, 2000, 3000 and 4000 times. After 1000 cycles, the specimens were inspected by C-scanning. A few changes in the laminate were observed using the inspection methodology only in specimens cycled 3000 times, or so. According to the found results, the used temperature range did not present enough conditions to cumulative damage in this type of laminate, which is in agreement with the macro - and micromechanical theory.
Resumo:
Purpose: To evaluate the effect of mechanical cycling and cementation strategies on the push-out bond strength between fiber posts and root dentin and the polymerization stresses produced using three resin cements. Materials and Methods: Eighty bovine mandibular teeth were sectioned to a length of 16 mm, prepared to 12 mm, and embedded in self-curing acrylic resin. The specimens were then distributed into 8 groups (n = 10): Gr1 - Scotchbond Multi Purpose + RelyX ARC; Gr2 - Scotchbond Multi Purpose + RelyX ARC + mechanical cycling; Gr3 - AdheSE + Multilink Automix; Gr4 - AdheSE + Multilink Automix + mechanical cycling; Gr5 - phosphoric acid + RelyX U100 (self-adhesive cement); Gr6 - phosphoric acid+ RelyX U100 + mechanical cycling; Gr7 - RelyX U100; Gr8 - RelyX U100 + mechanical cycling. The values obtained from the push-out bond strength test were submitted to two-way ANOVA and Tukey's test (p = 0.05), while the values obtained from the polymerization stress test were subjected to one-way ANOVA and Tukey's test (alpha = 0.05). Results: Mechanical cycling did not affect the bond strength values (p = 0.236), while cementation strategies affected the push-out bond strength (p < 0.001). Luting with RelyX U100 and Scotch Bond Multi Purpose + RelyX ARC yielded higher push-out bond strength values. The polymerization stress results were affected by the factor "cement" (p = 0.0104): the self-adhesive cement RelyX U100 exhibited the lowest values, RelyX ARC resulted in the highest values, while Multi link Automix presented values statistically similar to the other two cements. Conclusion: The self-adhesive cement appears to be a good alternative for luting fiber posts due to the high push-out bond strengths and lower polymerization stress values.
Resumo:
LAURENTINO, G. C., C. UGRINOWITSCH, H. ROSCHEL, M. S. AOKI, A. G. SOARES, M. NEVES JR, A. Y. AIHARA, A. DA ROCHA CORREA FERNANDES, and V. TRICOLI. Strength Training with Blood Flow Restriction Diminishes Myostatin Gene Expression. Med. Sci. Sports Exerc., Vol. 44, No. 3, pp. 406-412, 2012. Purpose: The aim of the study was to determine whether the similar muscle strength and hypertrophy responses observed after either low-intensity resistance exercise associated with moderate blood flow restriction or high-intensity resistance exercise are associated with similar changes in messenger RNA (mRNA) expression of selected genes involved in myostatin (MSTN) signaling. Methods: Twenty-nine physically active male subjects were divided into three groups: low-intensity (20% one-repetition maximum (1RM)) resistance training (LI) (n = 10), low-intensity resistance exercise associated with moderate blood flow restriction (LIR) (n = 10), and high-intensity (80% 1RM) resistance exercise (HI) (n = 9). All of the groups underwent an 8-wk training program. Maximal dynamic knee extension strength (1RM), quadriceps cross-sectional area (CSA), MSTN, follistatin-like related genes (follistatin (FLST), follistatin-like 3 (FLST-3)), activin IIb, growth and differentiation factor-associated serum protein 1 (GASP-1), and MAD-related protein (SMAD-7) mRNA gene expression were assessed before and after training. Results: Knee extension 1RM significantly increased in all groups (LI = 20.7%, LIR = 40.1%, and HI = 36.2%). CSA increased in both the LIR and HI groups (6.3% and 6.1%, respectively). MSTN mRNA expression decreased in the LIR and HI groups (45% and 41%, respectively). There were no significant changes in activin IIb (P > 0.05). FLST and FLST-3 mRNA expression increased in all groups from pre- to posttest (P < 0.001). FLST-3 expression was significantly greater in the HI when compared with the LIR and LI groups at posttest (P = 0.024 and P = 0.018, respectively). GASP-1 and SMAD-7 gene expression significantly increased in both the LIR and HI groups. Conclusions: We concluded that LIR was able to induce gains in 1RM and quadriceps CSA similar to those observed after traditional HI. These responses may be related to the concomitant decrease in MSTN and increase in FLST isoforms, GASP-1, and SMAD-7 mRNA gene expression.
Resumo:
Background. The aim of this study is to critically evaluate the bond strength (BS) of Glass-Ionomer Cements (GIC) to dentine with microtensile (mu TBS) and microshear (mu SBS) BS tests by assessing their rankings and failure patterns. Methods. Samples were made on flat dentine surfaces and submitted to mTBS and mSBS. The materials used were: high viscosity GIC (Ketac (TM) Molar Aplicap-KM), resin-modified GIC (Fuji II-FII), nano-filled resin-modified GIC (Ketac (TM) N100-N100) and an etch-and-rinse adhesive system with a composite resin (Adper (TM) Single Bond 2 and Z100 (TM)-Z100). All tests were performed with a Universal Testing Machine (24 h water storage, crosshead speed of 1 mm/min). Debonded surfaces were examined with a stereomicroscope (x40) to identify the failure mode. The data was analyzed with two-way ANOVA (p < 0.05) and LSD test. Results. Means were statistically different regarding the tests and materials, indicating that values for BS obtained for each material depend on the test performed. Failure analysis revealed that failures produced by mTBS were mainly cohesive for KM and FII. mu SBS failures were mainly adhesive or mixed for all materials. For the mTBS, the rank was Z100 > FII > KM = N100, whereas for the mSBS it was Z100 = FII = KM > N100. Conclusion: It may be concluded that distinct micro-mechanical tests present different failure patterns and rankings depending on the material to be considered.
Resumo:
Cure rates of youth with Acute Lymphoblastic Leukemia (ALL) have increased in the past decades, but survivor's quality of life and physical fitness has become a growing concern. Although previous reports showed that resistance training is feasible and effective, we hypothesized that a more intense exercise program would also be feasible, but more beneficial than low- to moderate-intensity training programs. We aimed to examine the effects of an exercise program combining high-intensity resistance exercises and moderate-intensity aerobic exercises in young patients undergoing treatment for ALL. A quasi-experimental study was conducted. The patients (n = 6; 5-16 years of age) underwent a 12-week intra-hospital training program involving high-intensity strength exercises and aerobic exercise at 70% of the peak oxygen consumption. At baseline and after 12 weeks, we assessed sub-maximal strength (10 repetition-maximum), quality of life and possible adverse effects. A significant improvement was observed in the sub maximal strength for bench press (71%), lat pull down (50%), leg press (73%) and leg extension (64%) as a result of the training (p < 0.01). The parents' evaluations of their children's quality of life revealed an improvement in fatigue and general quality of life, but the children's self-reported quality of life was not changed. No adverse effects occurred. A 12-week in-hospital training program including high-intensity resistance exercises promotes marked strength improvements in patients during the maintenance phase of the treatment for Acute Lymphoblastic Leukemia without side-effects. Parents' evaluations of their children revealed an improvement in the quality of life.
Resumo:
Background and Study Aim: The grip strength endurance is important for Brazilian Jiu-Jitsu (BJJ). Thus, the aims of this study were: a) to test the reliability of two kimono grip strength tests named maximum static lift (MSL) and maximum number of repetitions (MNR) and b) to examine differences between elite and non-elite BJJ players in these tests. Material/Methods: Thirty BJJ players participated into two phases: "A" to test reliability and "B" to compare elite and non-elite. In phase A, twenty participants performed the MSL and, 15 min later, the MNR in two occasions with 24-h interval. In phase B, ten other BJJ practitioners (non-elite) and ten athletes (elite) performed the same tests. The intraclass correlation coefficient (ICC) two way fixed model (3,1), Bland-Altman plot and the limits of agreement were used to test reliability, correlation between the tests were evaluated by Pearson correlations and independent T test (P<0.05) was utilized to compare elite vs. non-elite. Results: The ICC was high for repeated measurements on different days of phase A (MSL: r=0.99 and MNR: r=0.97). Limits of agreement for time of suspension were -6.9 to 2.4-s, with a mean difference of -2.3 s (CI: -3.3 to -1.2-s), while for number of repetitions the limits of agreement were -2.9 to 2.3-rep, with a mean difference of -0.3-rep (CI: -0.9 to 0.3-rep). In phase B, elite presented better performance for both tests (P<0.05) compared to non-elite (56 +/- 10-s vs. 37 +/- 11-s in MSL and 15 +/- 4-rep vs. 8 +/- 3-rep in MNR). Moderate correlation were found between MSL and MNR for absolute values during test (r=0.475; p=0.034), and retest phases (r=0.489; p=0.029), while moderate and high correlations in the test (r=0.615; p=0.004) and retest phases (r=0.716; p=0.001) were found for relative values, respectively. Conclusions: These proposed tests are reliable and both static and dynamic grip strength endurance tests seem to differentiate BJJ athletes from different levels.
Resumo:
The objective of this study was to evaluate the influence of Er:YAG laser (lambda = 2.94 mu m) on microtensile bond strength (mu TBS) and superficial morphology of bovine dentin bleached with 16% carbamide peroxide. Forty bovine teeth blocks (7 x 3 x 3 mm(3)) were randomly assigned to four groups: G1- bleaching and Er:YAG irradiation with energy density of 25.56 J/cm(2) (focused mode); G2 - bleaching; G3 - no-bleaching and Er:YAG irradiation (25.56 J/cm(2)); G4 - control, non-treated. G1 and G2 were bleached with 16% carbamide peroxide for 6 h during 21 days. Afterwards, all blocks were abraded with 320 to 600-grit abrasive papers to obtain flat standardized dentin surfaces. G1 and G3 were Er:YAG irradiated. Blocks were immediately restored with 4-mm-high composite resin (Adper Single Bond 2, Z-250-3 M/ESPE). After 24 h, the restored blocks (n = 9) were serially sectioned and trimmed to an hour-glass shape of approximately 1 mm(2) at the bonded interface area, and tested in tension in a universal testing machine (1 mm/ min). Failure mode was determined at a magnification of 100x using a stereomicroscope. One block of each group was selected for scanning electron microscope (SEM) analysis. mu TBS data was analyzed by two-way ANOVA and Tukey test (alpha = 0.05). Mean bond strengths (SD) in MPa were: G1- 32.7 (5.9)(A); G2- 31.1 (6.3)(A); G3- 25.2 (8.3)(B); G4- 36.7 (9.9).(A) Groups with different uppercase letters were significantly different from each other (p < .05). Enamel bleaching procedure did not affect mu TBS values for dentin adhesion. Er:YAG laser irradiation with 25.56 J/cm(2) prior to adhesive procedure of bleached teeth did not affect mu TBS at dentin and promoted a dentin surface with no smear layer and opened dentin tubules observed under SEM. On the other hand, Er:YAG laser irradiation prior to adhesive procedure of non-bleached surface impaired mu TBS compared to the control group.
Resumo:
The current research compared resting heart rate variability (VFC) before and after 10 weeks of strength training in groups that used and did not use a vibration platform. Seventeen healthy men were divided into conventional strength training (TF) or strength training using a vibration platform with a frequency of 30 Hz (TF+V30) training groups. One repetition maximum load (1-RM) on half squat exercise and VFC measurements were determined pre- and post-training program. Both groups had improved 1-RM load after the program (15.1% in TF group and 16.4% in TF+V30 group), although this increase was changed in the same extent for the two groups and there was no difference in 1-RM load between groups pre- and post-training program. No significant difference was observed in resting VFC measurements between groups pre and post-training program, however the magnitude of the effect size was moderated (ES = 0.50-0.80) for some variables (R-R interval, standard deviation of all R-R interval - SDNN, RMSSD, log-transformed of low frequency - InLF, and log-transformed of high frequency - InHF) in TF+V30 group. It was concluded that 10 weeks of strength training program with or without the vibration platform provided similar increase in 1-RM load in both groups, and although some evidences in this study indicate that vibration can increase vagal activity analyzed by ES, in neither groups the strength training was able to change VFC significantly.
Resumo:
Ionic liquids based on 1-alkyl-3-methylimidazolium cations and the hydrogen sulfate (or bisulfate) anion, HSO4-, are much more viscous than ionic liquids with alkyl sulfates, RSO4-. The structural origin of the high viscosity of HSO4- ionic liquids is unraveled from detailed comparison of the anion Raman bands in 1-ethyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium hydrogen sulfate with available data for simple HSO(4)(-) salts in crystalline phase, molten phase, and aqueous solution. Two Raman bands at 1046 and 1010 cm(-1) have been assigned as symmetric stretching modes nu(s)(S = O) of HSO4-, the latter being characteristic of chains of hydrogen-bonded anions. The intensity of this component increases in the supercooled liquid phase. For comparison purposes, Raman spectra of 1-ethyl-3-methylimidazolium ethyl sulfate and 1-butyl-3-methylimidazolium methyl sulfate have been also obtained. There is no indication of difference in the strength of hydrogen bond interactions of imidazolium cations with HSO4- or RSO4- anions. Raman spectra at high pressures, up to 2.6 GPa, are also discussed. Raman spectroscopy provides evidence that hydrogen-bonded anions resulting in anion-anion interaction is the reason for the high viscosity of imidazolium ionic liquids with HSO4-. If the ionic liquid is exposed to moisture, these structures are disrupted upon absorption of water from the atmosphere.
Resumo:
Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 mu m Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 mu m SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 mu m, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37A degrees C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (alpha a parts per thousand currency sign0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.
Resumo:
Study design: Cross-sectional. Objective: To analyze the relationships between functional tests, arm strength and root mean square of surface electromyography (EMG). Setting: Sao Paulo, Brazil. Methods: Twenty-four individuals with chronic tetraplegia participated. Upper extremity motor score (UEMS), functional independence measure (FIM) motor score, spinal cord independence measure III and capabilities of upper extremity (CUE) were performed. Muscle strength of the right elbow flexors-extensors was assessed using dynamometry and manual muscle test (MMT) and EMG of right biceps and triceps brachii were performed. Spearman's rank correlation coefficients and Mann-Whitney's U-test were used. Results: Functional tests and UEMS correlated strongly among them. UEMS highly correlated with triceps dynamometry and EMG. The dynamometry showed a very high correlation with MMT on the extensor group and a moderate correlation with flexor group. Triceps EMG showed moderate correlation with FIM and CUE. High correlations between triceps EMG and elbow extensors dynamometry and MMT were observed. A significant better performance on functional tests was observed on lower ASIA motor levels. The low-tetraplegia group showed a significant higher score on triceps EMG and dynamometry. Conclusion: Arm strength and EMG seem to be related to functional capabilities and independence in chronic tetraplegia. Spinal Cord (2012) 50, 28-32; doi:10.1038/sc.2011.95; published online 30 August 2011