16 resultados para elastic properties


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lamellar systems composed of lipid bilayers have been widely used as model system for investigating properties of biological membranes, interactions between membranes and with biomolecules. The composition of the membrane determines its three dimensional shape and its properties such as rigidity and compressibility which play an important role on membrane fusion, protein adhesion, interactions between proteins, etc. We present a systematic study of a lamellar system composed of lecithin and a commercial co-surfactant (Simusol), which is a mixture of ethoxylated fatty acids. Using X ray scattering and a new procedure to fit X-ray experimental data, we determine relevant parameters characterizing the lamellar structure, varying membrane composition from 100% of lecithin to 100% of Simulsol. We present experimental data illustrating the swelling behavior for the membrane of different compositions and the respective behavior of the Caillé parameter. From and GISAXS experiments on oriented films under controlled humidity we investigate the compressibility of the lamellar phase and the effect of incorporating co-surfactant. Combining the Caillé parameter and compressibility studies we determine the bending rigidity of membranes. The results obtained with this experimental approach and new procedure to fit X-ray experimental allows us to identify structural changes in the bilayer depending both on hydration and co-surfactant content, with implications on elastic properties of membranes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are several techniques to characterize the elastic modulus of wood and those currently using the natural frequencies of vibration stand out as they are non-destructive techniques, producing results that can be repeated and compared over time. This study reports on the effectiveness of the testing methods based on the natural frequencies of vibration versus static bending to obtain the elastic properties of reforested structural wood components usually employed in civil construction. The following components were evaluated: 24 beams of Eucalyptus sp. with nominal dimensions (40 x 60 x 2.000 mm) and 14 beams of Pinus oocarpa with nominal dimensions (45 x 90 x 2.300 mm) both without treatment; 30 boards with nominal dimensions (40 x 240 x 2.010 mm) and 30 boards with nominal dimensions (40 x 240 x 3.050 mm), both of Pinus oocarpa and with chromate copper arsenate (CCA) preservative treatment. The results obtained in thiswork show good correlation when compared to the results obtained by the static bending mechanical method, especially when applying the natural frequency of longitudinal vibration. The use of longitudinal frequency was reliable and practical, therefore recommended for determining the modulus of elasticity of wood structural elements. It was also found that no specific support is needed for the specimens using the longitudinal frequency, as well as no previous calibrations, reducing the execution time and enabling to test many samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we investigate the influence of extractives, lignin and holocellulose contents on performance index (PI) of seven woods used or tested for violin bows. Woods with higher values of this index (PI = root MOE/rho, where MOE is modulus of elasticity and rho is density) have a higher bending stiffness at a given mass, which can be related to bow wood quality. Extractive content was negatively correlated with PI in Caesalpinia echinata, Hanclroanthus sp. and Astronium lecointei. In C. echinata holocellulose was positively correlated with PI. These results need to be further explored with more samples and by testing additional wood properties. Although the chemical constituents could provide an indication of quality, it is not possible to establish appropriate woods for bows solely by examining their chemical constituents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The strain image contrast of some in vivo breast lesions changes with increasing applied load. This change is attributed to differences in the nonlinear elastic properties of the constituent tissues suggesting some potential to help classify breast diseases by their nonlinear elastic properties. A phantom with inclusions and long-term stability is desired to serve as a test bed for nonlinear elasticity imaging method development, testing, etc. This study reports a phantom designed to investigate nonlinear elastic properties with ultrasound elastographic techniques. The phantom contains four spherical inclusions and was manufactured from a mixture of gelatin, agar and oil. The phantom background and each of the inclusions have distinct Young's modulus and nonlinear mechanical behavior. This phantom was subjected to large deformations (up to 20%) while scanning with ultrasound, and changes in strain image contrast and contrast-to-noise ratio between inclusion and background, as a function of applied deformation, were investigated. The changes in contrast over a large deformation range predicted by the finite element analysis (FEA) were consistent with those experimentally observed. Therefore, the paper reports a procedure for making phantoms with predictable nonlinear behavior, based on independent measurements of the constituent materials, and shows that the resulting strain images (e. g., strain contrast) agree with that predicted with nonlinear FEA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Experimental studies demonstrate that infection with trypanosoma cruzi causes vasculitis. The inflammatory lesion process could hypothetically lead to decreased distensibility of large and small arteries in advanced Chagas' disease. We tested this hypothesis. Methods and results We evaluated carotid-femoral pulse-wave velocity (PWV) in 53 Chagas' disease patients compared with 31 healthy volunteers (control group). The 53 patients were classified into 3 groups: 1) 16 with indeterminate form of Chagas' disease; 2) 18 with Chagas' disease, electrocardiographic abnormalities, and normal systolic function; 3) 19 with Chagas' disease, systolic dysfunction, and mild-to-moderate congestive heart failure. No difference was noted between the 4 groups regarding carotid-femoral PWV (8.4 ± 1.1 vs 8.2 ± 1.5 vs 8.2 ± 1.4 vs 8.7 ± 1.6 m/s, P = 0.6) or pulse pressure (39.5 ± 7.6 vs 39.3 ± 8.1 vs 39.5 ± 7.4 vs 39.7 ± 6.9 mm Hg, P = 0.9). A positive, significant, similar correlation occurred between PWV and age in patients with Chagas' disease (r = 0.42, P = 0.002), in controls (r = 0.48, P = 0.006), and also between PWV and systolic blood pressure in both groups (patients with Chagas' disease, r = 0.38, P = 0.005; healthy subjects, r = 0.36, P = 0.043). Conclusion Carotid femoral pulse-wave velocity is not modified in patients with Chagas' disease, suggesting that elastic properties of large arteries are not affected in this disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully understood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholine (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle ¯bers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, incorporates the phenomenology of both MCh and FA and reproduces experimental results observed with in vitro exposure of smooth muscle to FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells in a tissue level model. The model can also be used in different biological scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully w1derstood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholinc (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle fibers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, ir1corporates the phenomenology of both MCh and FA and reproduces experirnental results observed with ir1 vitro exposure of smooth muscle to .FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells ir1 a tissue level model. The model can also be used in different biological scales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of the study was to verify the effects of a number of materials' parameters (crystalline content; Young's modulus, E; biaxial flexure strength, sigma(i); Vickers hardness, VH; fracture toughness, K-Ic; fracture surface energy, gamma(f); and index of brittleness, B) on the brittleness of dental ceramics. Five commercial dental ceramics with different contents of glass phase and crystalline particles were studied: a vitreous porcelain (VM7/V), a porcelain with 16 vol% leucite particles (d.Sign/D), a glass-ceramic with 29 vol% leucite particles (Empress/E1), a glass-ceramic with 58 vol% lithium-disilicate needle-like particles (Empress 2/E2), and a glass-infiltrated alumina composite with 65 vol% crystals (In-Ceram Alumina/IC). Discs were constructed according to manufacturers' instructions, ground and polished to final dimensions (12 mm x 1.1 mm). Elastic constants were determined by ultrasonic pulse-echo method. sigma(i) was determined by piston-on-3-balls method in inert condition. VH was determined using 19.6 N load and K-Ic was determined by indentation strength method. gamma(f) was calculated from the Griffith-Irwin relation and B by the ratio of HV to K-Ic. IC and E2 showed higher values of sigma(i), E, K-Ic and gamma(f), and lower values of B compared to leucite-based glass-ceramic and porcelains. Positive correlations were observed for sigma(i) versus K-Ic, and K-Ic versus E-1/2, however, E did not show relationship with HV and B. The increase of crystalline phase content is beneficial to decrease the brittleness of dental ceramics by means of both an increase in fracture surface energy and a lowering in index of brittleness. (C) 2012 Elsevier Ltd and Techna Group Sri. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rayleigh optical activities of small hydrogen-bonded methanol clusters containing two to five molecules are reported. For the methanol trimer, tetramer, and pentamer both cyclic and linear structures are considered. After the geometry optimizations, the dipole moments and the dipole polarizabilities (mean, interaction, and anisotropic components) are calculated using HF, MP2 and DFT (B3LYP, B3P86 and BH&HLYP) with aug-cc-pVDZ extended basis set. The polarizabilities are used to analyse the depolarization ratios and the Rayleigh scattering activities. The variations in the activity and in the depolarization for Rayleigh scattered radiation with the increase in the cluster size for both cyclic and linear structures are analysed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The flexural strength and the elastic modulus of acrylic resins, Dencor, Duralay and Trim Plus II, were evaluated with and without the addition of silanised glass fibre. Materials and methods: To evaluate the flexural strength and elastic modulus, 60 test specimens were fabricated with the addition of 10% ground silanised glass fibres for the experimental group, and 60 without the incorporation of fibres, for the control group, with 20 test specimens being made of each commercial brand of resin (Dencor, Duralay and Trim Plus II) for the control group and experimental group. After the test specimens had been completed, the flexural strength and elastic modulus tests were performed in a universal testing device, using the three-point bending test. For the specimens without fibres the One-Way Analysis of Variance and the complementary Tukey test were used, and for those with fibres it was not normal, so that the non-parametric Mann-Whitney test was applied. Results: For the flexural strength test, there was no statistical difference (p > 0.05) between each commercial brand of resin without fibres [Duralay 84.32(+/- 8.54), Trim plus 85.39(+/- 6.74), Dencor 96.70(+/- 6.52)] and with fibres (Duralay 87.18, Trim plus 88.33, Dencor 98.10). However, for the elastic modulus, there was statistical difference (p > 0.01) between each commercial brand of resin without fibres [Duralay 2380.64 (+/- 168.60), Trim plus 2740.37(+/- 311.74), Dencor 2595.42(+/- 261.22)] and with fibres (Duralay 3750.42, Trim plus 3188.80, Dencor 3400.75). Conclusion: The result showed that the incorporation of fibre did not interfere in the flexural strength values, but it increased the values for the elastic modulus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A previous study on the characterization of effective material properties of a d(15) thickness-shear piezoelectric Macro-Fibre Composite (MFC) made of seven layers (Kapton, Acrylic, Electrode, Piezoceramic Fibre and Epoxy Composite, Electrode, Acrylic, Kapton) using a finite element homogenization method has shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k(15) and piezoelectric stress constant e(15) when compared to the piezoceramic fibre properties. Therefore, the main objective of this work is to perform a parametric analysis in which the effect of the variations of fibre volume fraction, Epoxy elastic modulus, electrode thickness and active layer thickness on the MFC effective material properties is evaluated. Results indicate that an effective d(15) MFC should use relatively thick fibres having relatively high shear modulus and relatively stiff epoxy filler. On the other hand, the electrode thickness does not affect significantly the MFC performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A previous study on the characterization of effective material properties of a d15 thickness-shear piezoelectric Macro-Fibre Composite (MFC) made of seven layers (Kapton, Acrylic, Electrode, Piezoceramic Fibre and Epoxy Composite, Electrode, Acrylic, Kapton) using a finite element homogenization method has shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k15 and piezoelectric stress constant e15 when compared to the piezoceramic fibre properties. Therefore, the main objective of this work is to perform a parametric analysis in which the effect of the variations of fibre volume fraction, Epoxy elastic modulus, electrode thickness and active layer thickness on the MFC effective material properties is evaluated. Results indicate that an effective d15 MFC should use relatively thick fibres having relatively high shear modulus and relatively stiff epoxy filler. On the other hand, the electrode thickness does not affect significantly the MFC performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pulmonary surfactant has essential physical properties for normal lung function. The most important property is the surface tension. In this work, it was evaluated the surface tension of two commercial exogenous surfactants used in surfactant replacement therapy, poractant alfa (Curosurf, Chiesi Farmaceuticals, Italy) and beractant (Survanta, Abbott Laboratories, USA) using new parameters. A Langmuir film balance (Minitrough, KSV Instruments, Finland) was used to measure surface tension of poractant alfa and beractant samples. For both samples, we prepared a solution of 1 mg/m dissolved in chloroform (100π`), which was applied over a subphase of milli-Q water (175 ml) in the chamber of the balance. The chamber has two moving barriers that can change its surface area between a maximal value of 112.5 cm 2 , and a minimal value of 22.5 cm 2, defining a balance cycle. Each surfactant had its surface tension evaluated during 20 balance cycles for three times. Four quantities were calculated from the experiment: Minimum Surface Tension (MTS), defined as the surface tension at minimal surface area during the first cycle; Mean Work Cycle (MWC), defined as the mean hysteresis area of the measured surface tension curve of the last 16 balance cycles; Critical Active Surface Area in Compression (CASAC) or in Expansion (CASAE), defined as the maximal chamber area where the surfactant is active on the surface in compression or expansion. The t-test was applied to verify for statistical significance of the results. Comproved with the MST is the same reported in literature, the differences between MWC, CASAC, and CASAE were statistically significant (p<0.001). The MWC, CASAC and CASAE were higher for poractant alfa than for beractant. A higher MWC for poractant alfa means higher elastic recoil of the lung in comparison with beractant. Using a different methodology, our results showed that poractant alfa is probably more effective in a surfactant replacement therapy than beractant due the use of poractant alfa in relation to the use of beractant in preterm infants with Respiratory Distress Syndrome (RDS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low level laser therapy is used as a treatment of several conditions, including inflammatory processes and wound healing. Possible changes in mechanical properties of cells, caused by illumination, are investigated with optical magnetic twisting cytometry (OMTC), which is a technique used to evaluate mechanical properties in cell culture. Ferromagnetic micro beads are bound to cell cytoskeleton, the beads are magnetized vertically and a horizontal twisting magnetic field is applied causing a torque that moves the beads and deforms the cell, the beads rotate and displace. Based on the lateral displacement of the beads, elastic shear and loss moduli are obtained. Samples of human bronchial epithelial cell culture were divided in two groups: one was illuminated with a 660 nm red laser, 30 mW power, 0.75 W/cm2 irradiance, during different time intervals, and the other one, the control group, was not illuminated. The values of the mechanical constants of the cells of the control group showed a tendency of increasing with the time out of the incubator. On the other hand, the illuminated group showed constancy on the behavior of both moduli, keeping the normal conditions of the cell culture. Those results indicate that illumination can induce cells to homeostasis, and OMTC is sensitive to observe departures from the steady conditions. Hence, OMTC is an important technique which can be used to aggregate knowledge on the light effect in cell cytoskeleton and even on the low level laser therapy mechanisms in inflammatory processes and/or wound healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low level laser therapy is used as a treatment of several conditions, including inflammatory processes and wound healing. Possible changes in mechanical properties of cells, caused by illumination, are investigated with optical magnetic twisting cytometry (OMTC), which is a technique used to evaluate mechanical properties in cell culture. Ferromagnetic micro beads are bound to cell cytoskeleton, the beads are magnetized vertically and a horizontal twisting magnetic field is applied causing a torque that moves the beads and deforms the cell, the beads rotate and displace. Based on the lateral displacement of the beads, elastic shear and loss moduli are obtained. Samples of human bronchial epithelial cell culture were divided in two groups: one was illuminated with a 660 nm red laser, 30 mW power, 0.75 W/cm2 irradiance, during different time intervals, and the other one, the control group, was not illuminated. The values of the mechanical constants of the cells of the control group showed a tendency of increasing with the time out of the incubator. On the other hand, the illuminated group showed constancy on the behavior of both moduli, keeping the normal conditions of the cell culture. Those results indicate that illumination can induce cells to homeostasis, and OMTC is sensitive to observe departures from the steady conditions. Hence, OMTC is an important technique which can be used to aggregate knowledge on the light effect in cell cytoskeleton and even on the low level laser therapy mechanisms in inflammatory processes and/or wound healing.