19 resultados para ZIEGLER-CATALYSTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, Co/CeO2 catalysts, with different cobalt contents were prepared by the polymeric precursor method and were evaluated for the steam reforming of ethanol. The catalysts were characterized by N-2 physisorption (BET method), X-ray diffraction (XRD), UV-visible diffuse reflectance, temperature programmed reduction analysis (TPR) and field emission scanning electron microscopy (FEG-SEM). It was observed that the catalytic behavior could be influenced by the experimental conditions and the nature of the catalyst employed. Physical-chemical characterizations revealed that the cobalt content of the catalyst influences the metal-support interaction which results in distinct catalyst performances. The catalyst with the highest cobalt content showed the best performance among the catalysts tested, exhibiting complete ethanol conversion, hydrogen selectivity close to 66% and good stability at a reaction temperature of 600 degrees C. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysts containing mixtures of NiO, MgO and ZrO2 were synthesized by the polymerization method. They were characterized by X-ray diffraction (XRD), physisorption of N-2 (BET), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES), and then tested in the partial oxidation of methane (POM) in the presence of air (2CH(4):1O(2)) at 750 degrees C for 6 h. Among the ternary oxides, the catalyst with 40 mol% MgO showed the highest conversion rates in the catalytic processes, but also the highest carbon deposition values (48 mmol h (1)). The greater the amount of NiO-MgO solid solution formed, the higher was the conversion rate of reactants (CH4), peaking at 40 mol% of MgO. Catalysts with lower Ni content on the surface achieved a high rate of CH4 conversion into synthesis gas (H-2 + CO). The formation of more NiO-MgO solid solution seemed to inhibit the deactivation of Ni degrees during reaction. The values of the H-2/CO product ratio were generally found to be slightly lower than stoichiometric. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we discuss the effects of catalyst load with respect to carbon powder for several Pt and Pb-based catalysts, using formic acid as a model molecule. The discussion is based on electrochemical tests, a complete morphological investigation and theoretical calculations. We show that the Pt and Pb-based catalysts presented activity in formic acid oxidation at very low catalyst loads (e.g., 0.5% in respect to the carbon content). Physical characterisations demonstrate that the electrodes are composed of separated phases of Pt and lead distributed in Pt nanometric-sized islands that are heterogeneously dispersed on the carbon support and Pb ultra-small particles homogeneously distributed throughout the entire carbon surface, as demonstrated by the microscopy studies. At high catalyst loads, very large clusters of Pb(x)O(y) could be observed. Electrochemical tests indicated an increase in the apparent resistance of the system (by a factor of 19.7 Omega) when the catalyst load was increased. The effect of lead in the materials was also studied by theoretical calculations (OFT). The main conclusion is that the presence of Pb atoms in the catalyst can improve the adsorption of formic acid in the catalytic system compared with a pure Pt-based catalyst. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of nickel catalysts for industrial applications is relatively simple; however, nickel oxidation is usually difficult to avoid, which makes it challenging to optimize catalytic activities, metal loadings, and high-temperature activation steps. A robust, oxidation-resistant and very active nickel catalyst was prepared by controlled decomposition of the organometallic precursor [bis(1,5-cyclooctadiene)nickel(0)], Ni(COD)(2), over silica-coated magnetite (Fe3O4@SiO2). The sample is mostly Ni(0), and surface oxidized species formed after exposure to air are easily reduced in situ during hydrogenation of cyclohexene under mild conditions recovering the initial activity. This unique behavior may benefit several other reactions that are likely to proceed via Ni heterogeneous catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key objectives in fuel cell technology is to reduce Pt loading by the improvement of its catalytic activity towards alcohol oxidation. Here, a sol-gel based method was used to prepare ternary and quaternary carbon supported nanoparticles by combining Pt-Ru with Mo, Ta, Pb, Rh or Ir, which were used as electro-catalysts for the methanol and ethanol oxidation reactions in acid medium. Structural characterization performed by XRD measurements revealed that crystalline structures with crystallites ranging from 2.8 to 4.1 nm in size and with different alloy degrees were produced. Tantalum and lead deposited as a heterogeneous mixture of oxides with different valences resulting in materials with complex structures. The catalysts activities were evaluated by cyclic voltammetry and by Tafel plots and the results showed that the activity towards methanol oxidation was highly dependent of the alloy degree, while for ethanol the presence of a metal capable to promote the break of C-C bond, such as Rh, was necessary for a good performance. Additionally, the catalysts containing of TaOx or PbOx resulted in the best materials due to different effects: the hi-functional mechanism promoted by TaOx and a better dispersion of the catalysts constituents promoted by PbOx. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysts containing 10%Co supported on CexZr1-xO2 (0 < x < 1) were applied to ethanol steam reforming reactions. The catalysts were characterized by Raman spectroscopy, XANES-H-2 and DRS-UV-Vis. The catalytic tests were conducted at 673, 773 and 873 K, with molar ratios of H2O:ethanol = 3:1. The ethanol conversion and H-2 selectivity were temperature dependent and the association of CeO2 with ZrO2 in the support led to show a low formation of CO, due to the higher mobility of oxygen. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this Account is to provide an overview of our current research activities on the design and modification of superparamagnetic nanomaterials for application in the field of magnetic separation and catalysis. First, an introduction of magnetism and magnetic separation is done. Then, the synthetic strategies that have been developed for generating superparamagnetic nanoparticles spherically coated by silica and other oxides, with a focus on well characterized systems prepared by methods that generate samples of high quality and easy to scale- up, are discussed. A set of magnetically recoverable catalysts prepared in our research group by the unique combination of superparamagnetic supports and metal nanoparticles is highlighted. This Account is concluded with personal remarks and perspectives on this research field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the relationship between particle size (d), inter-particle distance (x(i)), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x(i)/d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x(i)/d can be always obtained. For y >= 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x(i)/d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x(i)/d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x(i)/d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EFFECTS OF ADDING LANTHANUM TO Ni/ZrO2 CATALYSTS ON ETHANOL STEAM REFORMING. The catalytic performance of Ni/ZrO2 catalysts loaded with different lanthanum content for steam reforming of ethanol was investigated. Catalysts were characterized by BET surface area, X-ray diffraction, UV-vis spectroscopy, temperature programmed reduction, and X-ray absorption fine structure techniques. Results showed that lanthanum addition led to an increase in the degree of reduction of both NiO and nickel surface species interacting; with the support, due to the higher dispersion effect. The best catalytic performance at 450 degrees C was found for the Ni/2LZ catalyst, which exhibited an effluent gaseous mixture with the highest H-2 yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since electrode electroactivity and stability depend directly on the nature, morphology, and structure of the material, we have investigated how modifications to the Pechini method during the synthesis of Pt-RuOx/C electrocatalysts affected catalyst activity. The structure and stability of the resulting materials were investigated after their submission to a large number of potential scans and to constant potential for a prolonged time period in sulfuric acid 0.5 mol L-1 and methanol 0.1 mol L-1 solution. DMFC tests were accomplished using membrane electrode assemblies (MEAs) prepared by hot-pressing a pretreated Nafion 117 membrane together with the prepared Pt-RuOx anodes and a Pt cathode (from E-TEK), in order to compare the catalytic activity of the materials prepared by different methods. The stability studies demonstrated that the catalyst whose resin/carbon support mixture was agitated in a balls mill before undergoing heat-treatment was more stable than the other prepared catalysts. The catalysts synthesized with the single resin consisting of Pt and Ru and subjected to ultrasound before heat-treatment furnished the highest power density in the single fuel cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.011208jes]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of 350 degrees C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm(-3), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PEM fuel cells seem to be the most affordable and commercially viable hydrogen-based cells, the biggest challenge being to obtain CO-free H-2 (<100 ppm) as the fuel. In this study, the use of CuO-CeO2 catalysts in preferential oxidation of CO to obtain CO-free H-2 (PROX reaction) was investigated. Ce1-xCuxO2 catalysts, with x (mol%) = 0, 0.01, 0.03, 0.05 and 0.10, were synthesized in one-step by the polymeric precursor method, to obtain a very fine dispersion and strong metal-support interaction, to favor active copper species and a preference for the PROX reaction. The results obtained from catalyzed reactions and characterization of the catalysts by XRD, Rietveld refinement, BET surface area, UV-Vis and TPR, suggest that this one-step synthesis method gives rise to catalysts with copper species selective for the PROX reaction, which reaches a maximum rate on Ce0.97Cu0.03O2 catalyst. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of support on the properties of rhodium and cobalt-based catalysts for ethanol steam reforming was studied in this work, by comparing the use of magnesia, alumina and Mg-Al oxide (obtained from hydrotalcite) as supports. It was found that metallic rhodium particles with around 2.4-2.6 nm were formed on all supports, but Mg-Al oxide led to the narrowest particles size distribution; cobalt was supposed to be located on the support, affecting its acidity. Rhodium interacts strongly with the support in the order: alumina> Mg-Al oxide > magnesia. The magnesium-containing catalysts showed low ethene selectivity and high hydrogen selectivity while the alumina-based ones showed high ethene selectivity, assigned to the Lewis sites of alumina. The Mg-Al oxide-supported rhodium and cobalt catalyst was the most promising sample to produce hydrogen by ethanol reforming, showing the highest hydrogen yield, low ethene selectivity and high specific surface area during reaction. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon supported Pt-Sn catalysts were prepared by reduction of Pt and Sn precursors with formic acid and characterized in terms of structure, morphology and surface properties. The electrocatalytic activity for ethanol oxidation was studied in a direct ethanol fuel cell (DEFC) at 70 degrees C and 90 degrees C. Electrochemical and physico-chemical data indicated that a proper balance of Pt and Sn species in the near surface region was necessary to maximize the reaction rate. The best atomic surface composition, in terms of electrochemical performance, was Pt:Sn 65:35 corresponding to a bulk composition 75:25 namely Pt3Sn1/C. The reaction products of ethanol electro-oxidation in single cell and their distribution as a function of the nature of catalyst were determined. Essentially, acetaldehyde and acetic acid were detected as the main reaction products; whereas, a lower content of CO2 was formed. The selectivity toward acetic acid vs. acetaldehyde increased with the increase of the Sn content and decreased by decreasing the concentration of the reducing agent used in the catalyst preparation. According to the recent literature, these results have been interpreted on the basis of ethanol adsorption characteristics and ligand effects occurring for Sn-rich electrocatalysts. (C) 2012 Elsevier Ltd. All rights reserved.