29 resultados para Vitreal alterations
Resumo:
Several experimental studies of pulmonary emphysema using animal models have been described in the literature. However, only a few of these studies have focused on the assessment of ergometric function as a non-invasive technique to validate the methodology used for induction of experimental emphysema. Additionally, functional assessments of emphysema are rarely correlated with morphological pulmonary abnormalities caused by induced emphysema. The present study aimed to evaluate the effects of elastase administered by tracheal puncture on pulmonary parenchyma and their corresponding functional impairment. This was evaluated by measuring exercise capacity in C57Bl/6 mice in order to establish a reproducible and safe methodology of inducing experimental emphysema. Thirty six mice underwent ergometric tests before and 28 days after elastase administration. Pancreatic porcine elastase solution was administered by tracheal puncture, which resulted in a significantly decreased exercise capacity, shown by a shorter distance run (-30.5%) and a lower mean velocity (-15%), as well as in failure to increase the elimination of carbon dioxide. The mean linear intercept increased significantly by 50% in tracheal elastase administration. In conclusion, application of elastase by tracheal function in C57Bl/6 induces emphysema, as validated by morphometric analyses, and resulted in a significantly lower exercise capacity, while resulting in a low mortality rate. (C) 2011 Sociedade Portuguesa de Pneumologia. Published by Elsevier Espana, S.L. All rights reserved.
Resumo:
Objective: The aim of this study is to investigate the effects of pregabalin on the behavior of rats under the influence of ketamine, an NMDA receptor antagonist that mimics the symptoms of schizophrenia. Methods: Rats were injected with saline or 25 mg/kg ketamine intraperitoneally. After that, behavior modifications were investigated by the evaluation of stereotypy and hyperlocomotion, after treating rats with pregabalin (at doses of 30 mg/kg or 100 mg/kg) or placebo (saline solution). Results: The administration of pregabalin reduced ketamine-induced hyperlocomotion. However, neither doses of pregabalin had a significant effect on ketamine-induced stereotypy. Conclusion: This is the first study to investigate the effects of pregabalin using an animal model of psychosis. Furthermore, our results indicate that behavioral changes induced by ketamine in rats can be reversed with the use of pregabalin, suggesting its potential to treat psychotic symptoms.
Resumo:
Background: In the analysis of effects by cell treatment such as drug dosing, identifying changes on gene network structures between normal and treated cells is a key task. A possible way for identifying the changes is to compare structures of networks estimated from data on normal and treated cells separately. However, this approach usually fails to estimate accurate gene networks due to the limited length of time series data and measurement noise. Thus, approaches that identify changes on regulations by using time series data on both conditions in an efficient manner are demanded. Methods: We propose a new statistical approach that is based on the state space representation of the vector autoregressive model and estimates gene networks on two different conditions in order to identify changes on regulations between the conditions. In the mathematical model of our approach, hidden binary variables are newly introduced to indicate the presence of regulations on each condition. The use of the hidden binary variables enables an efficient data usage; data on both conditions are used for commonly existing regulations, while for condition specific regulations corresponding data are only applied. Also, the similarity of networks on two conditions is automatically considered from the design of the potential function for the hidden binary variables. For the estimation of the hidden binary variables, we derive a new variational annealing method that searches the configuration of the binary variables maximizing the marginal likelihood. Results: For the performance evaluation, we use time series data from two topologically similar synthetic networks, and confirm that our proposed approach estimates commonly existing regulations as well as changes on regulations with higher coverage and precision than other existing approaches in almost all the experimental settings. For a real data application, our proposed approach is applied to time series data from normal Human lung cells and Human lung cells treated by stimulating EGF-receptors and dosing an anticancer drug termed Gefitinib. In the treated lung cells, a cancer cell condition is simulated by the stimulation of EGF-receptors, but the effect would be counteracted due to the selective inhibition of EGF-receptors by Gefitinib. However, gene expression profiles are actually different between the conditions, and the genes related to the identified changes are considered as possible off-targets of Gefitinib. Conclusions: From the synthetically generated time series data, our proposed approach can identify changes on regulations more accurately than existing methods. By applying the proposed approach to the time series data on normal and treated Human lung cells, candidates of off-target genes of Gefitinib are found. According to the published clinical information, one of the genes can be related to a factor of interstitial pneumonia, which is known as a side effect of Gefitinib.
Resumo:
Background. Neurodevelopmental alterations have been described inconsistently in psychosis probably because of lack of standardization among studies. The aim of this study was to conduct the first longitudinal and population-based magnetic resonance imaging (MRI) evaluation of the presence and size of the cavum septum pellucidum (CSP) and adhesio interthalamica (AI) in a large sample of patients with first-episode psychosis (FEP). Method. FEP patients (n=122) were subdivided into schizophrenia (n=62), mood disorders (n=46) and other psychosis (n=14) groups and compared to 94 healthy next-door neighbour controls. After 13 months, 80 FEP patients and 52 controls underwent a second MRI examination. Results. We found significant reductions in the AI length in schizophrenia FEP in comparison with the mood disorders and control subgroups (longer length) at the baseline assessment, and no differences in any measure of the CSP. By contrast, there was a diagnosis x time interaction for the CSP length, with a more prominent increase for this measure in the psychosis group. There was an involution of the AI length over time for all groups but no diagnosis x time interaction. Conclusions. Our findings suggest that the CSP per se may not be linked to the neurobiology of emerging psychotic disorders, although it might be related to the progression of the disease. However, the fact that the AI length was shown to be shorter at the onset of the disorder supports the neurodevelopmental model of schizophrenia and indicates that an alteration in this grey matter junction may be a risk factor for developing psychosis.
Resumo:
The objective of this study was to identify the relationship between social support and the functional capacity of elderly persons with cognitive alterations. It is a descriptive, cross-sectional and quantitative study. The subjects were 101 elderly persons registered in Family Health Centers whose performance in the Mini-Exam for Mental Status was below a certain specified level in a previous study. The Medical Outcomes Study questionnaire, Katz Index and Pfeffer Questionnaire were applied. The dimensions of material, affective, emotional, informational and positive social interaction support resulted in an average final score of 74.32 points, indicating a better level of material and affective support in relation to the other dimensions of support. There was a statistically significant correlation between emotional support and the Katz Index. Knowledge about this relationship favors the development of a nursing care pathway for the elderly which is capable of maintaining their functional capacity and ensuring satisfactory social relations.
Resumo:
Alzheimer's disease (AD) is the most common cause of dementia in the human population, characterized by a spectrum of neuropathological abnormalities that results in memory impairment and loss of other cognitive processes as well as the presence of non-cognitive symptoms. Transcriptomic analyses provide an important approach to elucidating the pathogenesis of complex diseases like AD, helping to figure out both pre-clinical markers to identify susceptible patients and the early pathogenic mechanisms to serve as therapeutic targets. This study provides the gene expression profile of postmortem brain tissue from subjects with clinic-pathological AD (Braak IV, V, or V and CERAD B or C; and CDR >= 1), preclinical AD (Braak IV, V, or VI and CERAD B or C; and CDR = 0), and healthy older individuals (Braak <= II and CERAD 0 or A; and CDR = 0) in order to establish genes related to both AD neuropathology and clinical emergence of dementia. Based on differential gene expression, hierarchical clustering and network analysis, genes involved in energy metabolism, oxidative stress, DNA damage/repair, senescence, and transcriptional regulation were implicated with the neuropathology of AD; a transcriptional profile related to clinical manifestation of AD could not be detected with reliability using differential gene expression analysis, although genes involved in synaptic plasticity, and cell cycle seems to have a role revealed by gene classifier. In conclusion, the present data suggest gene expression profile changes secondary to the development of AD-related pathology and some genes that appear to be related to the clinical manifestation of dementia in subjects with significant AD pathology, making necessary further investigations to better understand these transcriptional findings on the pathogenesis and clinical emergence of AD.
Resumo:
Background: In the Global postural re-education (GPR) evaluation, posture alterations are associated with anterior or posterior muscular chain impairments. Our goal was to assess the reliability of the GPR muscular chain evaluation. Methods: Design: Inter-rater reliability study. Fifty physical therapists (PTs) and two experts trained in GPR assessed the standing posture from photographs of five youths with idiopathic scoliosis using a posture analysis grid with 23 posture indices (PI). The PTs and experts indicated the muscular chain associated with posture alterations. The PTs were also divided into three groups according to their experience in GPR. Experts' results (after consensus) were used to verify agreement between PTs and experts for muscular chain and posture assessments. We used Kappa coefficients (K) and the percentage of agreement (%A) to assess inter-rater reliability and intra-class coefficients (ICC) for determining agreement between PTs and experts. Results: For the muscular chain evaluation, reliability was moderate to substantial for 12 PI for the PTs (% A: 56 to 82; K: 0.42 to 0.76) and perfect for 19 PI for the experts. For posture assessment, reliability was moderate to substantial for 12 PI for the PTs (% A > 60%; K: 0.42 to 0.75) and moderate to perfect for 18 PI for the experts (% A: 80 to 100; K: 0.55 to 1.00). The agreement between PTs and experts was good for most muscular chain evaluations (18 PI; ICC: 0.82 to 0.99) and PI (19 PI; ICC: 0.78 to 1.00). Conclusions: The GPR muscular chain evaluation has good reliability for most posture indices. GPR evaluation should help guide physical therapists in targeting affected muscles for treatment of abnormal posture patterns.
Resumo:
Chronic administration of glucocorticoids (GC) leads to characteristic features of type 2 diabetes in mammals. The main action of dexamethasone in target cells occurs through modulation of gene expression, although the exact mechanisms are still unknown. We therefore investigated the gene expression profile of pancreatic islets from rats treated with dexamethasone using a cDNA array screening analysis. The expression of selected genes and proteins involved in mitochondria] apoptosis was further analyzed by PCR and immunoblotting. Insulin, triglyceride and free fatty acid plasma levels, as well as glucose-induced insulin secretion, were significantly higher in dexamethasone-treated rats compared with controls. Out of 1176 genes, 60 were up-regulated and 28 were down-regulated by dexamethasone treatment. Some of the modulated genes are involved in apoptosis, stress response, and proliferation pathways. RT-PCR confirmed the cDNA array results for 6 selected genes. Bax alpha protein expression was increased, while Bcl-2 was decreased. In vivo dexamethasone treatment decreased the mitochondrial production of NAD(P)H, and increased ROS production. Concluding, our data indicate that dexamethasone modulates the expression of genes and proteins involved in several pathways of pancreatic-islet cells, and mitochondria dysfunction might be involved in the deleterious effects after long-term GC treatment.
Resumo:
Several epidemiological and experimental studies has been reported that lutein (LT) presents antioxidant properties. Aim of the present study was to investigate the protective effects of LT against oxidative stress and DNA damage induced by cisplatin (cDDP) in a human derived liver cell line (HepG2). Cell viability and DNA-damage was monitored by MU and comet assays. Moreover, different biochemical parameters related to redox status (glutathione, cytochrome-c and intracellular ROS) were also evaluated. A clear DNA-damage was seen with cDDP (1.0 mu M) treatment. In combination with the carotenoid, reduction of DNA damage was observed after pre- and simultaneous treatment of the cells, but not when the carotenoid was added to the cells after the exposure to cDDP. Exposure of the cells to cDDP also caused significant changes of all biochemical parameters and in co-treatment of the cells with LT, the carotenoid reverted these alterations. The results indicate that cDDP induces pronounced oxidative stress in HepG2 cells that is related to DNA damage and that the supplementation with the antioxidant LT may protect these adverse effects caused by the exposure of the cells to platinum compound, which can be a good predict for chemoprevention. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Coding region alterations of ZIC2 are the second most common type of mutation in holoprosencephaly (HPE). Here we use several complementary bioinformatic approaches to identify ultraconserved cis-regulatory sequences potentially driving the expression of human ZIC2. We demonstrate that an 804 bp element in the 3' untranslated region (3'UTR) is highly conserved across the evolutionary history of vertebrates from fish to humans. Furthermore, we show that while genetic variation of this element is unexpectedly common among holoprosencephaly subjects (6/528 or >1%), it is not present in control individuals. Two of six proband-unique variants are de novo, supporting their pathogenic involvement in HPE outcomes. These findings support a general recommendation that the identification and analysis of key ultraconserved elements should be incorporated into the genetic risk assessment of holoprosencephaly cases.
Resumo:
Increased vascular matrix metalloproteinases (MMPs) levels play a role in late phases of hypertensive vascular remodeling. However, no previous study has examined the time course of MMPs in the various phases of two-kidney, one-clip hypertension (2K1C). We examined structural vascular changes, collagen and elastin content, vascular oxidative stress, and MMPs levels/activities during the development of 2K1C hypertension. Plasma angiotensin converting enzyme (ACE) activity was measured to assess renin-angiotensin system activation. Sham or 2K1C hypertensive rats were studied after 2, 4, 6, and 10 weeks of hypertension. Systolic blood pressure (SBP) was monitored weekly. Morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin, orcein and picrosirius red sections. Aortic NADPH activity and superoxide production was evaluated. Aortic gelatinolytic activity was determined by in situ zymography, and MMP-2, MMP-14, and tissue inhibitor of MMPs (TIMP)-2 levels were determined by gelatin zymography, immunofluorescence and immunohistochemistry. 2K1C hypertension was associated with increased ACE activity, which decreased to normal after 10 weeks. We found increased aortic collagen and elastin content in the early phase of hypertension, which were associated with vascular hypertrophy, increased vascular MMP-2 and MMP-14 (but not TIMP-2) levels, and increased gelatinolytic activity, possibly as a result of increased vascular NADPH oxidase activity and oxidative stress. These results indicate that vascular remodeling of renovascular hypertension is an early process associated with early increases in MMPs activities, enhanced matrix deposition and oxidative stress. Using antioxidants or MMPs inhibitors in the early phase of hypertension may prevent the vascular alterations of hypertension. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
To confirm that Beagle dogs are a good experimental model for Chagas disease, we evaluated hematological alterations during the acute and chronic phases in Beagle dogs infected with the Y, Berenice-78 (Be-78) and ABC strains of Trypanosoma cruzi, correlating clinical signs with the parasitemia curve. We demonstrate that the acute phase of infection was marked by lethargy and loss of appetite. Simultaneously, we observed anemia, leukocytosis and lymphocytosis. Also,we describe hematological alterations and clinical signs that were positively correlated with the parasitemia during the experimental infection with the three strains of T cruzi, and demonstrate that experimental infection of Beagle is a trustworthy model for Chagas disease.
Resumo:
The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immuno-reactive (NPY-IR) and CGRP-immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78 +/- 3%, 77 +/- 6% and 10 +/- 4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58 +/- 2% for superior cervical ganglion and 58 +/- 8% for stellate ganglion) and chronic (60 +/- 2% for superior cervical ganglion and 59 +/- 15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19 +/- 5% and 13 +/- 3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31 +/- 3% in normal animals to 54 +/- 2% and 49 +/- 3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation.
Resumo:
Aerobic exercise training (ET) has been established as an important non-pharmacological treatment of hypertension, since it decreases blood pressure. Studies show that the skeletal muscle abnormalities in hypertension are directly associated with capillary rarefaction, higher percentage of fast-twitch fibers (type II) with glycolytic metabolism predominance and increased muscular fatigue. However, little is known about these parameters in hypertension induced by ET. We hypothesized that ET corrects capillary rarefaction, potentially contributing to the restoration of the proportion of muscle fiber types and metabolic proprieties. Twelve-week old Spontaneously Hypertensive Rats (SHR, n=14) and Wistar Kyoto rats (WKY, n=14) were randomly assigned into 4 groups: SHR, trained SHR (SHR-T), WKY and trained WKY (WKY-T). As expected, ten weeks of ET was effective in reducing blood pressure in SHR-T group. In addition, we analyzed the main markers of ET. Resting bradycardia, increase of exercise tolerance, peak oxygen uptake and citrate synthase enzyme activity in trained groups (WKY-T and SHR-T) showed that the aerobic condition was achieved. ET also corrected the skeletal muscle capillary rarefaction in SHR-T. In parallel, we observed reduction in percentage of type IIA and IIX fibers and simultaneous augmented percentage of type I fibers induced by ET in hypertension. These data suggest that ET prevented changes in soleus fiber type composition in SHR, since angiogenesis and oxidative enzyme activity increased are important adaptations of ET, acting in the maintenance of muscle oxidative metabolism and fiber profile.
Resumo:
Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.