34 resultados para SPINAL MRI
Resumo:
In this paper we address the "skull-stripping" problem in 3D MR images. We propose a new method that employs an efficient and unique histogram analysis. A fundamental component of this analysis is an algorithm for partitioning a histogram based on the position of the maximum deviation from a Gaussian fit. In our experiments we use a comprehensive image database, including both synthetic and real MRI. and compare our method with other two well-known methods, namely BSE and BET. For all datasets we achieved superior results. Our method is also highly independent of parameter tuning and very robust across considerable variations of noise ratio.
Resumo:
The acetic acid and phenyl-p-benzoquinone are easy and fast screening models to access the activity of novel candidates as analgesic drugs and their mechanisms. These models induce a characteristic and quantifiable overt pain-like behavior described as writhing response or abdominal contortions. The knowledge of the mechanisms involved in the chosen model is a crucial step forward demonstrating the mechanisms that the candidate drug would inhibit because the mechanisms triggered in that model will be addressed. Herein, it was investigated the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase), JNK (Jun N-terminal Kinase) and p38, PI3K (phosphatidylinositol 3-kinase) and microglia in the writhing response induced by acetic acid and phenyl-p-benzoquinone, and flinch induced by formalin in mice. Acetic acid and phenyl-p-benzoquinone induced significant writhing response over 20 min. The nociceptive response in these models were significantly and in a dose-dependent manner reduced by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI3K (wortmannin) inhibitors. Furthermore, the co-treatment with MAP kinase and PI3K inhibitors, at doses that were ineffective as single treatment, significantly inhibited acetic acid- and phenyl-p-benzoquinone-induced nociception. The treatment with microglia inhibitors minocycline and fluorocitrate also diminished the nociceptive response. Similar results were obtained in the formalin test. Concluding. MAP kinases and PI3K are important spinal signaling kinases in acetic acid and phenyl-p-benzoquinone models of overt pain-like behavior and there is also activation of spinal microglia indicating that it is also important to determine whether drugs tested in these models also modulate such spinal mechanisms. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVES: This prospective, randomized, experimental study with rats aimed to investigate the influence of general treatment strategies on the motor recovery of Wistar rats with moderate contusive spinal cord injury. METHODS: A total of 51 Wistar rats were randomized into five groups: control, maze, ramp, runway, and sham (laminectomy only). The rats underwent spinal cord injury at the T9-T10 levels using the NYU-Impactor. Each group was trained for 12 minutes twice a week for two weeks before and five weeks after the spinal cord injury, except for the control group. Functional motor recovery was assessed with the Basso, Beattie, and Bresnahan Scale on the first postoperative day and then once a week for five weeks. The animals were euthanized, and the spinal cords were collected for histological analysis. RESULTS: Ramp and maze groups showed an earlier and greater functional improvement effect than the control and runway groups. However, over time, unexpectedly, all of the groups showed similar effects as the control group, with spontaneous recovery. There were no histological differences in the injured area between the trained and control groups. CONCLUSION: Short-term benefits can be associated with a specific training regime; however, the same training was ineffective at maintaining superior long-term recovery. These results might support new considerations before hospital discharge of patients with spinal cord injuries.
Resumo:
Background. Neurodevelopmental alterations have been described inconsistently in psychosis probably because of lack of standardization among studies. The aim of this study was to conduct the first longitudinal and population-based magnetic resonance imaging (MRI) evaluation of the presence and size of the cavum septum pellucidum (CSP) and adhesio interthalamica (AI) in a large sample of patients with first-episode psychosis (FEP). Method. FEP patients (n=122) were subdivided into schizophrenia (n=62), mood disorders (n=46) and other psychosis (n=14) groups and compared to 94 healthy next-door neighbour controls. After 13 months, 80 FEP patients and 52 controls underwent a second MRI examination. Results. We found significant reductions in the AI length in schizophrenia FEP in comparison with the mood disorders and control subgroups (longer length) at the baseline assessment, and no differences in any measure of the CSP. By contrast, there was a diagnosis x time interaction for the CSP length, with a more prominent increase for this measure in the psychosis group. There was an involution of the AI length over time for all groups but no diagnosis x time interaction. Conclusions. Our findings suggest that the CSP per se may not be linked to the neurobiology of emerging psychotic disorders, although it might be related to the progression of the disease. However, the fact that the AI length was shown to be shorter at the onset of the disorder supports the neurodevelopmental model of schizophrenia and indicates that an alteration in this grey matter junction may be a risk factor for developing psychosis.
Resumo:
Chagas' disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-alpha, IFN-gamma, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-gamma were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.
Resumo:
The aim of the present study was to evaluate the use MRI to quantify the workload of gluteus medius (GM), vastus medialis (VM) and vastus lateralis (VL) muscles in different types of squat exercises. Fourteen female volunteers were evaluated, average age of 22 +/- 2 years, sedentary, without clinical symptoms, and without history of previous lower limb injuries. Quantitative MRI was used to analyze VM, VL and GM muscles before and after squat exercise, squat associated with isometric hip adduction and squat associated with isometric hip abduction. Multi echo images were acquired to calculate the transversal relaxation times (T2) before and after exercise. Mixed Effects Model statistical analysis was used to compare images before and after the exercise (Delta T2) to normalize the variability between subjects. Imaging post processing was performed in Matlab software. GM muscle was the least active during the squat associated with isometric hip adduction and VM the least active during the squat associated with isometric hip abduction, while VL was the most active during squat associated with isometric hip adduction. Our data suggests that isometric hip adduction during the squat does not increase the workload of VM, but decreases the GM muscle workload. Squat associated with isometric hip abduction does not increase VL workload.
Resumo:
The presence of cognitive impairment is a frequent complaint among elderly individuals in the general population. This study aimed to investigate the relationship between aging-related regional gray matter (rGM) volume changes and cognitive performance in healthy elderly adults. Morphometric magnetic resonance imaging (MRI) measures were acquired in a community-based sample of 170 cognitively-preserved subjects (66 to 75 years). This sample was drawn from the "Sao Paulo Ageing and Health" study, an epidemiological study aimed at investigating the prevalence and risk factors for Alzheimer's disease in a low income region of the city of Sao Paulo. All subjects underwent cognitive testing using a cross-culturally battery validated by the Research Group on Dementia 10/66 as well as the SKT (applied on the day of MRI scanning). Blood genotyping was performed to determine the frequency of the three apolipoprotein E allele variants (APOE epsilon 2/epsilon 3/epsilon 4) in the sample. Voxelwise linear correlation analyses between rGM volumes and cognitive test scores were performed using voxel-based morphometry, including chronological age as covariate. There were significant direct correlations between worse overall cognitive performance and rGM reductions in the right orbitofrontal cortex and parahippocampal gyrus, and also between verbal fluency scores and bilateral parahippocampal gyral volume (p < 0.05, familywise-error corrected for multiple comparisons using small volume correction). When analyses were repeated adding the presence of the APOE epsilon 4 allele as confounding covariate or excluding a minority of APOE epsilon 2 carriers, all findings retained significance. These results indicate that rGM volumes are relevant biomarkers of cognitive deficits in healthy aging individuals, most notably involving temporolimbic regions and the orbitofrontal cortex.
Resumo:
Vascular pathology, including blood-brain/spinal cord barrier (BBB/BSCB) alterations, has recently been recognized as a key factor possibly aggravating motor neuron damage, identifying a neurovascular disease signature for ALS. However, BBB/BSCB competence in sporadic ALS (SALS) is still undetermined. In this study, BBB/BSCB integrity in postmortem gray and white matter of medulla and spinal cord tissue from SALS patients and controls was investigated. Major findings include (1) endothelial cell damage and pericyte degeneration, (2) severe intra- and extracellular edema, (3) reduced CD31 and CD105 expressions in endothelium, (4) significant accumulation of perivascular collagen IV, and fibrin deposits (5) significantly increased microvascular density in lumbar spinal cord, (6) IgG microvascular leakage, (7) reduced tight junction and adhesion protein expressions. Microvascular barrier abnormalities determined in gray and white matter of the medulla, cervical, and lumbar spinal cord of SALS patients are novel findings. Pervasive barrier damage discovered in ALS may have implications for disease pathogenesis and progression, as well as for uncovering novel therapeutic targets. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background and Purpose-The pattern of antenatal brain injury varies with gestational age at the time of insult. Deep brain nuclei are often injured at older gestational ages. Having previously shown postnatal hypertonia after preterm fetal rabbit hypoxia-ischemia, the objective of this study was to investigate the causal relationship between the dynamic regional pattern of brain injury on MRI and the evolution of muscle tone in the near-term rabbit fetus. Methods-Serial MRI was performed on New Zealand white rabbit fetuses to determine equipotency of fetal hypoxia-ischemia during uterine ischemia comparing 29 days gestation (E29, 92% gestation) with E22 and E25. E29 postnatal kits at 4, 24, and 72 hours after hypoxia-ischemia underwent T2- and diffusion-weighted imaging. Quantitative assessments of tone were made serially using a torque apparatus in addition to clinical assessments. Results-Based on the brain apparent diffusion coefficient, 32 minutes of uterine ischemia was selected for E29 fetuses. At E30, 58% of the survivors manifested hind limb hypotonia. By E32, 71% of the hypotonic kits developed dystonic hypertonia. Marked and persistent apparent diffusion coefficient reduction in the basal ganglia, thalamus, and brain stem was predictive of these motor deficits. Conclusions-MRI observation of deep brain injury 6 to 24 hours after near-term hypoxia-ischemia predicts dystonic hypertonia postnatally. Torque-displacement measurements indicate that motor deficits in rabbits progressed from initial hypotonia to hypertonia, similar to human cerebral palsy, but in a compressed timeframe. The presence of deep brain injury and quantitative shift from hypo-to hypertonia may identify patients at risk for developing cerebral palsy. (Stroke. 2012;43:2757-2763.)
Resumo:
The induction of autoimmune encephalomyelitis (EAE) in Lewis rats results in a period of exacerbation followed by complete recovery. Therefore, this model is widely used for studying the evolution of multiple sclerosis. In the present investigation, differentially expressed proteins in the spinal cord of Lewis rats during the evolution of EAE were assessed using the combination of 2DE and MALDI-TOF MS. The majority of the differentially expressed proteins were identified during the acute phase of EAE, in relation to naive control animals. On the other hand, recovered rats presented a similar protein expression pattern in comparison with the naive ones. This observation can be explained, at least in part, by the intense catabolism existent in acute phase due to nervous tissue damage. In recovered rats, we have described the upregulation of proteins that are apparently involved in the recovery of damaged tissue, such as light and medium neurofilaments, glial fibrillary acidic protein, tubulins subunits, and quaking protein. These proteins are involved mainly in cell growth, myelination, and remyelination as well as in astrocyte and oligodendrocyte maturation. The present study has demonstrated that the inflammatory response, characterized by an increase of the proliferative response and infiltration of autoreactive T lymphocytes in the central nervous system, occurs simultaneously with neurodegeneration.
Resumo:
Purpose: To assess the correlation between MRI findings of the pancreas with those of the heart and liver in patients with beta thalassemia; to compare the pancreas T2* MRI results with glucose and ferritin levels and labile plasma iron (LPI). Materials and methods: We retrospectively evaluated chronically transfused patients, testing glucose with enzymatic tests, serum ferritin with chemiluminescence, LPI with cellular fluorescence, and T2* MRI to assess iron content in the heart, liver, and pancreas. MRI results were compared with one another and with serum glucose, ferritin, and LPI. Liver iron concentration (LIC) was determined in 11 patients' liver biopsies by atomic absorption spectrometry. Results: 289 MRI studies were available from 115 patients during the period studied. 9.4% of patients had overt diabetes and an additional 16% of patients had impaired fasting glucose. Both pancreatic and cardiac R2* had predictive power (p < 0.0001) for identifying diabetes. Cardiac and pancreatic R2* were modestly correlated with one another (r(2) = 0.20, p < 0.0001). Both were weakly correlated with LIC (r(2) = 0.09, p < 0.0001 for both) and serum ferritin (r(2) = 0.14, p < 0.0001 and r(2) = 0.03, p < 0.02, respectively). None of the three served as a screening tool for single observations. There is a strong log-log, or power-law, relationship between ratio of signal intensity (SIR) values and pancreas R2* with an r(2) of 0.91. Conclusions: Pancreatic iron overload can be assessed by MRI, but siderosis in other organs did not correlate significantly with pancreatic hemosiderosis. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
OBJECTIVE: The standard therapy for patients with high-level spinal cord injury is long-term mechanical ventilation through a tracheostomy. However, in some cases, this approach results in death or disability. The aim of this study is to highlight the anesthetics and perioperative aspects of patients undergoing insertion of a diaphragmatic pacemaker. METHODS: Five patients with quadriplegia following high cervical traumatic spinal cord injury and ventilator-dependent chronic respiratory failure were implanted with a laparoscopic diaphragmatic pacemaker after preoperative assessments of their phrenic nerve function and diaphragm contractility through transcutaneous nerve stimulation. ClinicalTrials.gov:NCT01385384. RESULTS: The diaphragmatic pacemaker placement was successful in all of the patients. Two patients presented with capnothorax during the perioperative period, which resolved without consequences. After six months, three patients achieved continuous use of the diaphragm pacing system, and one patient could be removed from mechanical ventilation for more than 4 hours per day. CONCLUSIONS: The implantation of a diaphragmatic phrenic system is a new and safe technique with potential to improve the quality of life of patients who are dependent on mechanical ventilation because of spinal cord injuries. Appropriate indication and adequate perioperative care are fundamental to achieving better results.
Resumo:
Introduction: The aim of this study was to investigate the temporal modifications in bone mass, bone biomechanical properties and bone morphology in spinal cord injured rats 2, 4 and 6 weeks after a transection. Material and methods: Control animals were randomly distributed into four groups (n = 10 each group): control group (CG) - control animals sacrificed immediately after surgery; spinal cord-injured 2 weeks (2W) - spinal cord-injured animals sacrificed 2 weeks after surgery; spinal cord-injured 4 weeks (4W) - spinal cord-injured animals sacrificed 4 weeks after surgery; spinal cord-injured 6 weeks (6W) - spinal cord-injured animals sacrificed 6 weeks after surgery. Results: Biomechanical properties of the right tibia were determined by a threepoint bending test and injured animals showed a statistically significant decrease in maximal load compared to control animals. The right femur was used for densitometric analysis and bone mineral content of the animals sacrificed 4 and 6 weeks after surgery was significantly higher compared to the control animals and animals sacrificed 2 weeks after surgery. Histopathological and morphological analysis of tibiae revealed intense resorptive areas in the group 2 weeks after injury only. Conclusions: The results of this study show that this rat model is a valuable tool to investigate bone remodeling processes specifically associated with SCI. Taken together, our results suggest that spinal cord injury induced bone loss within 2 weeks after injury in rats.
Resumo:
Objectives: Cocaine is a commonly used illicit drug that leads to the most emergency department (ED) visits. Chest pain is the most common presentation, reported in 40% of patients. Our aim was to evaluate the incidence of previous myocardial infarction among young cocaine users (18-40 years) with cocaine-associated chest pain by the assessment of myocardial fibrosis by cardiovascular MRI. Second, we also intended to evaluate the coronary tree by CT angiography (CTA). Methods: 24 cocaine users (22 males) who frequently complained about cocaine-associated chest pain underwent CTA and cardiovascular MRI. Mean age of patients was 29.7 years and most of them (79%) had frequently used inhalatory cocaine. Results: The calcium score turned out to be positive in only one patient (Agatston=54). Among the coronary segments evaluated, only one patient had calcified plaques at the anterior descending coronary artery (proximal and medium segments). Assessment of regional ventricular function by the evaluation of 17 segments was normal in all patients. None of the patients showed myocardial delayed enhancement, indicative of myocardial fibrosis. CTA therefore confirmed the low cardiovascular risk of these patients, since most of them (96%) had no atherosclerosis detected by this examination. Only one patient (4%) had coronary atherosclerosis detected, without significant coronary stenosis. Conclusion: Cardiovascular MR did not detect the presence of delayed enhancement indicative of myocardial fibrosis among young cocaine users with low cardiovascular risk who had complained of cocaine-associated chest pain.
Resumo:
Objectives: The aim of this study was to investigate bone changes in the condyle, articular eminence and glenoid fossa in relation to the position of the articular disc. Methods: 148 temporomandibular joints (TMJs) of 74 symptomatic patients who underwent MRI were evaluated. The position of the disc was classified as either normal (N), disc displacement with reduction (DDwR), disc displacement without reduction (DDwoR) and posterior displacement (PD). Bone changes were investigated in the condyle and temporal components of the TMJ and classified as osteophytosis, sclerosis or erosion. Results: There were no bone changes in the glenoid fossa of the temporal bone. Of the total number of TMJs studied, 94 (63.5%) were N, 34 (23%) presented DDwoR, 19 (12.8%) presented DDwR and 1 (0.7%) presented PD. The bone changes in the condyle and posterior aspect of the articular eminence were associated with the position of the disc. The bone changes in the anterior aspect of the articular eminence were not associated with the position of the disc. Conclusion: In cases of DDwoR, bone changes in the condyles were more common. The combination of erosion and osteophytosis in the condyle and the bone changes of the posterior aspect of the articular eminence were associated with disc position. Dentomaxillofacial Radiology (2012) 41, 367-372. doi: 10.1259/dmfr/79317853