20 resultados para Piezoelectric actuators and sensors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow pumps act as important devices in areas such as Bioengineering, Medicine, and Pharmacy, among other areas of Engineering, mainly for delivering liquids or gases at small-scale and precision flow rate quantities. Principles for pumping fluids based on piezoelectric actuators have been widely studied, since they allow the construction of pump systems for displacement of small fluid volumes with low power consumption. This work studies valveless piezoelectric diaphragm pumps for flow generation, which uses a piezoelectric ceramic (PZT) as actuator to move a membrane (diaphragm) up and down as a piston. The direction of the flow is guaranteed by valveless configuration based on a nozzle-diffuser system that privileges the flow in just one pumping direction. Most research efforts on development of valveless flow pump deal either with computational simulations based on simplified models or with simplified physical approaches based on analytical models. The main objective of this work is the study of a methodology to develop a low-cost valveless piezoelectric diaphragm flow pump using computational simulations, parametric study, prototype manufacturing, and experimental characterization. The parametric study has shown that the eccentricity of PZT layer and metal layer plays a key role in the performance of the pump.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor and actuator based on laminated piezocomposite shells have shown increasing demand in the field of smart structures. The distribution of piezoelectric material within material layers affects the performance of these structures; therefore, its amount, shape, size, placement, and polarization should be simultaneously considered in an optimization problem. In addition, previous works suggest the concept of laminated piezocomposite structure that includes fiber-reinforced composite layer can increase the performance of these piezoelectric transducers; however, the design optimization of these devices has not been fully explored yet. Thus, this work aims the development of a methodology using topology optimization techniques for static design of laminated piezocomposite shell structures by considering the optimization of piezoelectric material and polarization distributions together with the optimization of the fiber angle of the composite orthotropic layers, which is free to assume different values along the same composite layer. The finite element model is based on the laminated piezoelectric shell theory, using the degenerate three-dimensional solid approach and first-order shell theory kinematics that accounts for the transverse shear deformation and rotary inertia effects. The topology optimization formulation is implemented by combining the piezoelectric material with penalization and polarization model and the discrete material optimization, where the design variables describe the amount of piezoelectric material and polarization sign at each finite element, with the fiber angles, respectively. Three different objective functions are formulated for the design of actuators, sensors, and energy harvesters. Results of laminated piezocomposite shell transducers are presented to illustrate the method. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piezoelectric ceramics, such as PZT, can generate subnanometric displacements, bu t in order to generate multi- micrometric displacements, they should be either driven by high electric voltages (hundreds of volts ), or operate at a mechanical resonant frequency (in narrow band), or have large dimensions (tens of centimeters). A piezoelectric flextensional actuator (PFA) is a device with small dimensions that can be driven by reduced voltages and can operate in the nano- and micro scales. Interferometric techniques are very adequate for the characterization of these devices, because there is no mechanical contact in the measurement process, and it has high sensitivity, bandwidth and dynamic range. A low cost open-loop homodyne Michelson interferometer is utilized in this work to experimentally detect the nanovi brations of PFAs, based on the spectral analysis of the interfero metric signal. By employing the well known J 1 ...J 4 phase demodulation method, a new and improved version is proposed, which presents the following characteristics: is direct, self-consistent, is immune to fading, and does not present phase ambiguity problems. The proposed method has resolution that is similar to the modified J 1 ...J 4 method (0.18 rad); however, differently from the former, its dynamic range is 20% larger, does not demand Bessel functions algebraic sign correction algorithms and there are no singularities when the static phase shift between the interferometer arms is equal to an integer multiple of  /2 rad. Electronic noise and random phase drifts due to ambient perturbations are taken into account in the analysis of the method. The PFA nanopositioner characterization was based on the analysis of linearity betw een the applied voltage and the resulting displacement, on the displacement frequency response and determination of main resonance frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic and catalytic gold nanoparticles were electrodeposited through potential pulse on dendrimer-carbon nanotube layer-by-layer (LbL) films. A plasmon absorption band at about 550 nm revealed the presence of nanoscale gold in the film. The location of the Au nanoparticles in the film was clearly observed by selecting the magnetic force microscopy mode. To our knowledge, this is the first report on the electrochemical synthesis of magnetic Au nanoparticles. In addition to the magnetic properties, the Au nanoparticles also exhibited high catalytic activity towards ethanol and glycerol oxidation in alkaline medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the investigation on the structural differences between InAs quantum rings and their precursor quantum dots species as well as on the presence of piezoelectric fields and asymmetries in these nanostructures. The experimental results show significant reduction in the ring dimensions when the sizes of capped and uncapped ring and dot samples are compared. The iso-lattice parameter mapped by grazing-incidence x-ray diffraction has revealed the lateral extent of strained regions in the buried rings. A comparison between strain and composition of dot and ring structures allows inferring on how the ring formation and its final configuration may affect optical response parameters. Based on the experimental observations, a discussion has been introduced on the effective potential profile to emulate theoretically the ring-shape confinement. The effects of confinement and strain field modulation on electron and hole band structures are simulated by a multiband k.p calculation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733964]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A template-based lamination technique for the manufacture of ferroelectrets from uniform electret films was recently reported. In the present work, this technique is used to prepare similar ferroelectret structures from low-density polyethylene (LDPE) films and from fluoro-ethylene-propylene (FEP) copolymer films. A comparative analysis of the pressure-, temperature-, and frequency-dependent piezoelectric properties has been performed on the two ferroelectret systems. It is observed that the FEP ferroelectrets exhibit better piezoelectric responses and are thermally more stable. The difference between the piezoelectric d(33) coefficients of the two ferroelectret systems is partially explained here by their different elastic moduli. The anti-resonance peaks of both structures have been investigated by means of dielectric resonance spectroscopy and electroacoustic sound-pressure measurements. A difference of more than 10 kHz is observed between the anti-resonance frequencies of the two ferroelectret systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of piezoelectric materials for the development of electromechanical devices for the harvesting or scavenging of ambient vibrations has been extensively studied over the last decade. The energy conversion from mechanical (vibratory) to electrical energy is provided by the electromechanical coupling between mechanical strains/stresses and electric charges/voltages in the piezoelectric material. The majority of the studies found in the open literature present a tip-mass cantilever piezoelectric device tuned on the operating frequency. Although recent results show that these devices can be quite effective for harvesting small amounts of electrical energy, little has been published on the robustness of these devices or on the effect of parametric uncertainties on the energy harvested. This work focuses on a cantilever plate with bonded piezoelectric patches and a tip-mass serving as an energy harvesting device. The rectifier and storage electric circuit was replaced by a resistive circuit (R). In addition, an alternative to improve the harvesting performance by adding an inductance in series to the harvesting circuit, thus leading to a resonant circuit (RL), is considered. A coupled finite element model leading to mechanical (displacements) and electrical (charges at electrodes) degrees of freedom is considered. An analysis of the effect of parametric uncertainties of the device on the electric output is performed. Piezoelectric and dielectric constants of the piezoelectric active layers and electric circuit equivalent inductance are considered as stochastic parameters. Mean and confidence intervals of the electric output are evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study shows the incorporation of ibuprofen, an anti-inflammatory drug, in Langmuir monolayers as cell membrane models. Significant effects were observed for dipalmitoyl phosphatidyl choline (DPPC) monolayers with relevant changes in the elasticity of the monolayer. Dipalmitoyl phosphatidyl glycerol (DPPG) monolayers were affected by small concentrations of ibuprofen, from 1 to 5 mol%. For both types of monolayer, ibuprofen could penetrate into the hydrophobic part of the monolayer, which was confirmed with polarization-modulated infrared reflection–absorption spectroscopy (PM-IRRAS). Brewster angle microscopy (BAM) images showed that ibuprofen prevents the formation of large domains of DPPC. The pharmacological action should occur primarily with penetration of ibuprofen via electrically neutral phospholipid headgroups of the membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer electrolytes (PEs) are currently the focus of much attention as potential electrolytes in electrochemical devices such as batteries, display devices and sensors. Deoxyribonucleic acid (DNA) as an important biological macromolecule has electric conducting electrochemical properties and unique three dimensional structures. With the goal of developing a new family of environmentally friendly multifunctional biohybrid materials displaying simultaneously high ionic conductivity we have produced in the present work, flexible films based on DNA, incorporating ionic liquids (ILs). Over the last decade ILs have been employed as a new media in electrochemistry and electroanalysis. The materials studied here have been characterized by means of Differential Scanning Calorimetry, Complex Impedance Spectroscopy and Cyclic Voltammetry. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid materials with enhanced properties can now be obtained by combining nanomaterials such as carbon nanotubes and metallic nanoparticles, where the main challenge is to control fabrication conditions. In this study, we demonstrate that platinum nanoparticles (PtNps) can be electrogenerated within layer-by-layer (LbL) films of polyamidoamine (PAMAM) dendrimers and single-walled carbon nanotubes (SWCNTs), which serve as stabilizing matrices. The advantages of the possible control through electrogeneration were demonstrated with a homogeneous distribution of PtNps over the entire surface of the PAMAM/SWCNT LbL films, whose electroactive sites could be mapped using magnetic force microscopy. The Pt-containing films were used as catalysts for hydrogen peroxide reduction, with a decrease in the reduction potential of 60 mV compared to a Pt film deposited onto bare ITO. By analyzing the mechanisms responsible for hydrogen peroxide reduction, we ascribed the enhanced catalytic activity to synergistic effects between platinum and carbon in the LbL films, which are promising for sensing and fuel cell applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SHERMAN, D.J.; LI, B.; FERRELL E.J.; ELLIS, J.T.; COX, W.D.; MAIA, L.P., and SOUSA, P.H.G.O., 2011. Measuring Aeolian Saltation: A Comparison of Sensors. In: Roberts, T.M., Rosati, J.D., and Wang, P. (eds.), Proceedings, Symposium to Honor Dr. Nicholas C. Kraus, Journal of Coastal Research, Special Issue, No. 59, pp. 280-290. West Palm Beach (Florida), ISSN 0749-0208. We report the results of field experiments designed to compare four types of aeolian saltation sensors: the Safire; the Wenglor (R) Particle Counter; the Miniphone; and the Buzzer Disc. Sets of sensors were deployed in tight spatial arrays and sampled at rates as fast as 20 kHz. In two of the three trials, the data from the sensors are compared to data obtained from sand traps. The Miniphone and the Buzzer Disc, based on microphone and piezoelectric technologies, respectively, produced grain impact counts comparable to those derived from the trap data. The Satire and the Wenglor (R) Particle Counter produce count rates that were an order of magnitude too slow. Satires undercount because of their large momentum threshold and because its signal is saturated at relatively slow transport rates. We conclude that the Miniphone and the Buzzer Disc are appropriate for deployment as grain counters because their small size allows them to be installed in closely-spaced sets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to characterize and compare the spectral behavior of different soil classes obtained by orbital and terrestrial sensors. For this, an area of 184 ha in Rafard (SP) Brazil was staked on a regular grid of 100x100 m and soil samples were collected and georeferenced. After that, soil spectral curves were obtained with IRIS sensor and the sample points were overlaid at Landsat and ASTER images for spectral data collection. The soil samples were classified and mean soil curves for all sensors were generated by soil classes. The soil classes were differentiated by texture, organic matter and total iron for all sensors studied, the orbital sensors despite the lower spectral resolution, maintained the characteristics of the soil and the curves of reflectance intensity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A semi-autonomous unmanned underwater vehicle (UUV), named LAURS, is being developed at the Laboratory of Sensors and Actuators at the University of Sao Paulo. The vehicle has been designed to provide inspection and intervention capabilities in specific missions of deep water oil fields. In this work, a method of modeling and identification of yaw motion dynamic system model of an open-frame underwater vehicle is presented. Using an on-board low cost magnetic compass sensor the method is based on the utilization of an uncoupled 1-DOF (degree of freedom) dynamic system equation and the application of the integral method which is the classical least squares algorithm applied to the integral form of the dynamic system equations. Experimental trials with the actual vehicle have been performed in a test tank and diving pool. During these experiments, thrusters responsible for yaw motion are driven by sinusoidal voltage signal profiles. An assessment of the feasibility of the method reveals that estimated dynamic system models are more reliable when considering slow and small sinusoidal voltage signal profiles, i.e. with larger periods and with relatively small amplitude and offset.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2-Methylisoborneol (MIB) and geosmin (GSM) are sub products from algae decomposition and, depending on their concentration, can be toxic: otherwise, they give unpleasant taste and odor to water. For water treatment companies it is important to constantly monitor their presence in the distributed water and avoid further costumer complaints. Lower-cost and easy-to-read instrumentation would be very promising in this regard. In this study, we evaluate the potentiality of an electronic tongue (ET) system based on non-specific polymeric sensors and impedance measurements in monitoring MIB and GSM in water samples. Principal component analysis (PCA) applied to the generated data matrix indicated that this ET was capable to perform with remarkable reproducibility the discrimination of these two contaminants in either distilled or tap water, in concentrations as low as 25 ng L-1. Nonetheless, this analysis methodology was rather qualitative and laborious, and the outputs it provided were greatly subjective. Also, data analysis based on PCA severely restricts automation of the measuring system or its use by non-specialized operators. To circumvent these drawbacks, a fuzzy controller was designed to quantitatively perform sample classification while providing outputs in simpler data charts. For instance, the ET along with the referred fuzzy controller performed with a 100% hit rate the quantification of MIB and GSM samples in distilled and tap water. The hit rate could be read directly from the plot. The lower cost of these polymeric sensors allied to the especial features of the fuzzy controller (easiness on programming and numerical outputs) provided initial requirements for developing an automated ET system to monitor odorant species in water production and distribution. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we discuss the detection of glucose and triglycerides using information visualization methods to process impedance spectroscopy data. The sensing units contained either lipase or glucose oxidase immobilized in layer-by-layer (LbL) films deposited onto interdigitated electrodes. The optimization consisted in identifying which part of the electrical response and combination of sensing units yielded the best distinguishing ability. It is shown that complete separation can be obtained for a range of concentrations of glucose and triglyceride when the interactive document map (IDMAP) technique is used to project the data into a two-dimensional plot. Most importantly, the optimization procedure can be extended to other types of biosensors, thus increasing the versatility of analysis provided by tailored molecular architectures exploited with various detection principles. (C) 2012 Elsevier B.V. All rights reserved.