29 resultados para Cerebral asymmetry
Resumo:
Background: The severity of physical and mental impairments and oral problems, as well as socioeconomic factors, may have an impact on quality of life of children with cerebral palsy (CP). The aim of this research was to assess the impact of impairments and oral health conditions, adjusted by socioeconomic factors, on the Oral Health-Related Quality of Life (OHRQoL) of children with CP using their parents as proxies. Methods: Sixty children, between 6-14 years of age were selected. Their parents answered a children's OHRQoL instrument (5 domains) which combines the Parental-Caregivers Perception Questionnaire (P-CPQ) and Family Impact Scale (FIS). The severity of dental caries, type of CP, communication ability, gross motor function, seizures and socioeconomic conditions were assessed. Results: Considering the total score of the OHRQoL instrument, only the reduction of communication ability and dental caries severity had a negative impact on the OHRQoL (p < 0.05). Considering each domain of the instrument, the severity of the type of CP and its reduction of communication ability showed a negative impact on oral symptoms and functional limitations domains (p < 0.05). Seizures have a negative impact on oral symptoms domain (p = 0.006). The multivariate fitted model showed that the severity of dental caries, communication ability and low family income were negatively associated with the impact on OHRQoL (p = 0.001). Conclusions: The severity of dental caries, communication ability, and family income are conditions strongly associated with a negative impact on OHRQoL of children with CP.
Resumo:
Previous studies have reported increased cerebral blood flow (CBF) velocity after decompressive craniectomy in traumatic brain injury (TBI) patients. A 27-year-old man presented with clinical and tomographic signs of cerebral herniation secondary to TBI. Prior to decompressive craniectomy, hemodynamic study by perfusion computed tomography (CT) indicated diffuse cerebral hyperperfusion. Following surgical decompression, the patient recovered neurologically and perfusion CT disclosed a decrease in the intensity of cerebral perfusion. The patient's blood pressure levels were similar at both pre- and postoperative perfusion CT examinations. This finding provides indirect evidence that decompressive craniectomy may improve mechanisms of CBF regulation in TBI, providing pathophysiological insights in the cerebral hemodynamics of TBI patients. This is the first report analyzing the hemodynamic changes through perfusion CT (PCT) in a patient with decompressive craniotomy due to TBI. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Introduction: The progress in technology, associated to the high survival rate in premature newborn infants in neonatal intensive care units, causes an increase in morbidity. Individuals with CP present complex motor alterations, with primary deficits of abnormal muscle tone affecting posture and voluntary movement, alteration of balance and coordination, decrease of force, and loss of selective motor control with secondary problems of contractures and bone deformities. Objective: The aim of this work is to describe the spontaneous movement and strategies that lead infants with cerebral palsy to move. Methods: Seven infants used to receive assistance at the Essential Stimulation Center of CIAM (Israeli Center for Multidisciplinary Support - Philanthropic Institution), with ages ranging between six and 18 months with diagnosis of Cerebral Palsy (CP) were assessed. Results: The results show the difficulty presented by the infants with respect to the spontaneous motor functions and the necessity of help from the caregiver in order to perform the functional activity (mobility). Prematurity prevails as the major risk factor among the complications. Conclusion: The child development can be understood as a product of the dynamic interactions involving the infant, the family, and the context. Thus, the social interactions and family environment in which the infant live may encourage or limit both the acquisition of skills and the functional independence.
Resumo:
We study baryon asymmetry generation originated from the leptogenesis in the presence of hypermagnetic fields in the early Universe plasma before the electroweak phase I ransition (EWPT). For the simplest Chern-Simons (CS) wave configuration of hypermagnetic field we find the baryon asymmetry growth when the hypermagnetic field value changes due to alpha(2)-dynamo and the lepton asymmetry rises due to the Abelian anomaly. We solve the corresponding integro-differential equations for the lepton asymmetries describing such selfconsistent dynamics for lepto- and baryogenesis in the two scenarios: (i) when a primordial lepton asymmetry sits in right electrons e(R); and (ii) when, in addition to e(R), a left lepton asyninwtty for e(L) and v(eL) at due to chirality flip reactions provided by in Iiigg,s decays at the temperatures, T < T-RL similar to 10 TeV. We find that the baryon asymmetry of the Universe (BAU) rises very fast through such leptogenesis, especially, in strong hypermagnetic fields. Varying (decreasing) the CS wave number parameter k(0) < 10(-7) T-EW one can recover the observable value of BAU, eta(B) similar to 10(-9), where k(0) = 10(-7) T-EW corresponds to the ataxinittat value for CS wave number surviving ohmic dissipation of hypermagnetic field. In the scenario (ii) one predicts the essential difference of the lepton numbers of right- and left electrons at EWPT time, L-eR - L-eL similar to (mu(eR) / mu(eL))/T-EW = Delta mu/T-EW similar or equal to 10(-5) that can be used as an initial condition for chiral asymmetry after EWPT.
Resumo:
Calorie restriction (CR) enhances animal life span and prevents age-related diseases, including neurological decline. Recent evidence suggests that a mechanism involved in CR-induced life-span extension is NO-stimulated mitochondrial biogenesis. We examine here the effects of CR on brain mitochondrial content. CR increased eNOS and nNOS and the content of mitochondria] proteins (cytochrome c oxidase, citrate synthase, and mitofusin) in the brain. Furthermore, we established an in vitro system to study the neurological effects of CR using serum extracted from animals on this diet. In cultured neurons, CR serum enhanced nNOS expression and increased levels of nitrite (a NO product). CR serum also enhanced the levels of cytochrome c oxidase and increased citrate synthase activity and respiratory rates in neurons. CR serum effects were inhibited by L-NAME and mimicked by the NO donor SNAP. Furthermore, both CR sera and SNAP were capable of improving neuronal survival. Overall, our results indicate that CR increases mitochondrial biogenesis in a NO-mediated manner, resulting in enhanced reserve respiratory capacity and improved survival in neurons. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The joint torque is an important variable related to children with cerebral palsy. The present study analyzed kinetic parameters during elbow flexion and extension movements in healthy and cerebral palsy children. Ten healthy and 10 cerebral palsy children participated of the study. An isokinetic dynamometer was used to measure the elbow mean peak torque, mean angle peak torque, coefficient of variation and acceleration during flexion and extension movements at different angular speeds. The mean peak torque on extension movement in healthy children group was significant higher compared to the cerebral palsy group. The coefficient of variation on both flexion and extension movements was significantly higher in cerebral palsy group. However there were significantly difference on both groups compared the lowest and highest velocities. Although the results showed no difference in flexor peak torque, the acceleration is significantly lower in lowest and highest angular velocity.
Resumo:
Internal hip rotation (IHR) is the major cause of intoeing gait in patients with cerebral palsy (CP). Femoral derotation osteotomy (FDO) is the preferred treatment to correct excessive anteversion, however the condition may persist or recur postoperatively. Retrospective clinical and kinematic evaluation of 75 spastic diplegic CP patients was conducted for a mean duration of 22 months following proximal FDO. The patients were divided into two groups depending on the correction or persistence of IHR evident at kinematics after surgery. If corrected, mean patient follow-up was extended to 53 months. Outcomes were analyzed using Two Proportions Equality, Mann-Whitney and Wilcoxon tests. IHR persisted in 33.3% of cases at mean follow-up of 22 months and subtrochanteric femur osteotomy was more frequent in this group (p = 0.033). Thirty-five of the fifty-four patients with first-round gait correction were monitored during the extended follow-up. Those for whom IHR recurred (9.5%) had undergone FDO at a comparatively younger age. Patient gender, operations prior to or at the time of femoral osteotomy, topographic classification, GMFCS level, or the extent of preoperative clinical and kinematic abnormalities had no apparent influence on persistence or recurrence of abnormal gait. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
As the available public cerebral gene expression image data increasingly grows, the demand for automated methods to analyze such large amount of data also increases. An important study that can be carried out on these data is related to the spatial relationship between gene expressions. Similar spatial density distribution of expression between genes may indicate they are functionally correlated, thus the identification of these similarities is useful in suggesting directions of investigation to discover gene interactions and their correlated functions. In this paper, we describe the use of a high-throughput methodology based on Voronoi diagrams to automatically analyze and search for possible local spatial density relationships between gene expression images. We tested this method using mouse brain section images from the Allen Mouse Brain Atlas public database. This methodology provided measurements able to characterize the similarity of the density distribution between gene expressions and allowed the visualization of the results through networks and Principal Component Analysis (PCA). These visualizations are useful to analyze the similarity level between gene expression patterns, as well as to compare connection patterns between region networks. Some genes were found to have the same type of function and to be near each other in the PCA visualizations. These results suggest cerebral density correlations between gene expressions that could be further explored. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present study we evaluated the relationship between manual preference and intermanual performance asymmetry in reaching of 5-month-old infants. Manual preference was assessed through frequency of reaches toward toys presented at midline, left or right in egocentric coordinates. Intermanual performance asymmetry was evaluated through kinematic analysis. Results showed that performance was predominantly symmetric between hands. Lateral toy positions induced predominance of ipsilateral reaching, while the midline position led to equivalent distribution between right and left handed reaches. No significant correlation between manual preference and intermanual performance asymmetry was observed. These results converge against the notion that manual preference derives from a genetically determined advantage of movement control favoring the right hand. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Objective: To evaluate the neuroprotection of mild hypothermia, applied in different moments, in temporary focal cerebral ischemia in rats. Methods: Rats was divided into Control (C), Sham (S), Ischemic-control(IC), Pre-ischemic Hypothermia (IH1), Intra-ischemic Hypothermia (IH2), and Post-ischemic Hypothermia (IH3) groups. Morphometry was performed using the KS400 software (Carl Zeiss (R)) in coronal sections stained by Luxol Fast Blue. Ischemic areas and volumes were obtained. Results: Statistically, blue areas showed difference for C vs. IC, IC vs. IH1 and IC vs. IH2 (p=0.0001; p=0.01; p=0.03), and no difference between C vs. S, IC vs. IH3 and IH vs. IH2 (p=0.39; p=0.85; p=0.63). Red areas showed difference between C vs. IC, IC vs. IH1 and IC vs. IH2 (p=0.0001; p=0.009; p=0.03), and no difference between C vs. S, IC vs. IH3 and IH1 vs. IH2 (p=0.48; p=0.27; p=0.68). Average ischemic areas and ischemic volumes showed difference between IC vs. IH1 and IC vs. IH2 (p=0.0001 and p=0.0011), and no difference between IC vs. IH3 and IH1 vs. IH2 (p=0.57; p=0.79). Conclusion: Pre-ischemic and intra-ischemic hypothermia were shown to be similarly neuroprotective, but this was not true for post-ischemic hypothermia.
Resumo:
This study aimed at analyzing the relationship between slow- and fast-alpha asymmetry within frontal cortex and the planning, execution and voluntary control of saccadic eye movements (SEM), and quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 12 healthy participants performing a fixed (i.e., memory-driven) and a random SEM (i.e., stimulus-driven) condition. We find main effects for SEM condition in slow- and fast-alpha asymmetry at electrodes F3-F4, which are located over premotor cortex, specifically a negative asymmetry between conditions. When analyzing electrodes F7-F8, which are located over prefrontal cortex, we found a main effect for condition in slow-alpha asymmetry, particularly a positive asymmetry between conditions. In conclusion, the present approach supports the association of slow- and fast-alpha bands with the planning and preparation of SEM, and the specific role of these sub-bands for both, the attention network and the coordination and integration of sensory information with a (oculo)-motor response. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
NMDAR (N-methyl-D-aspartate receptor) is one subtype of ionotrophic glutamate receptor which is extensively distributed in the central nervous system (CNS). In the mammalian CNS, NMDAR serves prominent roles in the pathophysiologic process of cerebral ischemia. This study aimed to investigate the pattern of expression of protein and gene of the excitatory neurotransmitter NMDAR in experimental focal cerebral ischemia and the hole of neuroprotection with hypothermia and ketoprofen. 120 rats were randomly divided into 6 groups (20 animals each): control - no surgery; sham - simulation of surgery; ischemic - focal ischemia for 1 hour, without reperfusion; ischemic + intraischemic hypothermia; ischemic + previous intravenous ketoprofen, and ischemic + hypothermia and ketoprofen. Ten animals from each experimental group were used to establish the volume of infarct. Transient focal cerebral ischemia was obtained in rats by occlusion of the middle cerebral artery with an intraluminal suture. The infarct volume was measured using morphometric analysis of infarct areas defined by triphenyl tetrazolium chloride and the patterns of expression of the protein and gene NMDA were evaluated by immunohistochemistry and quantitative real-time PCR, respectively. Increases in the protein and gene NMDA receptor in the ischemics areas were observed and these increases were reduced by hypothermia and ketoprofen. The increase in the NMDA receptor protein and gene expression observed in the ischemic animals was reduced by neuroprotection (hypothermia and ketoprofen). The NMDA receptor increases in the ischemic area suggests that the NMDA mediated neuroexcitotoxicity plays an important role in cell death and that the neuroprotective effect of both, hypothermia and ketoprofen is directly involved with the NMDA.
Resumo:
Background: Cerebral palsy (CP) presents changes in posture and movement as a core characteristic, which requires therapeutic monitoring during the habilitation or rehabilitation of children. Besides clinical treatment, it is fundamental that professionals use systems of evaluation to quantify the difficulties presented to the individual and assist in the organization of a therapeutic program. The aim of this study was to quantitatively verify the performance of children with spastic di-paresia type CP. Methods: The Pediatric Evaluation of Disability Inventory (PEDI) and Gross Motor Function Classification System (GMFM) tests were used and classification made through the GMFCS in the assessment of 7 patients with CP, 4 females and 3 males, average age of 9 years old. Results: According to GMFCS scales, 17% (n=1) were level II and 83% (n=6) were level III. The PEDI test and 88 GMFM items were used in the area of mobility. We observed that there was high correlation between mobility and gross motor function with Pearson's correlation coefficient =0.929) showing the likely impact of these areas in the functional skills and the quality of life of these patients. Conclusion: We suggest the impact of the limitation of the areas in functional skills and quality of life of these patients.
Resumo:
Arterial hypertension is a major risk factor for ischemic stroke. However, the management of preexisting hypertension is still controversial in the treatment of acute stroke in hypertensive patients. The present study evaluates the influence of preserving hypertension during focal cerebral ischemia on stroke outcome in a rat model of chronic hypertension, the spontaneously hypertensive rats (SHR). Focal cerebral ischemia was induced by transient (1 h) occlusion of the middle cerebral artery, during which mean arterial blood pressure was maintained at normotension (110-120 mm Hg, group 1, n=6) or hypertension (160-170 mm Hg, group 2, n=6) using phenylephrine. T2-, diffusion- and perfusion-weighted MRI were performed serially at five different time points: before and during ischemia, and at 1, 4 and 7 days after ischemia. Lesion volume and brain edema were estimated from apparent diffusion coefficient maps and T2-weighted images. Regional cerebral blood flow (rCBF) was measured within and outside the perfusion deficient lesion and in the corresponding regions of the contralesional hemisphere. Neurological deficits were evaluated after reperfusion. Infarct volume, edema, and neurological deficits were significantly reduced in group 2 vs. group 1. In addition, higher values and rapid restoration of rCBF were observed in group 2, while rCBF in both hemispheres was significantly decreased in group 1. Maintaining preexisting hypertension alleviates ischemic brain injury in SHR by increasing collateral circulation to the ischemic region and allowing rapid restoration of rCBF. The data suggest that maintaining preexisting hypertension is a valuable approach to managing hypertensive patients suffering from acute ischemic stroke. Published by Elsevier B.V.
Resumo:
Cerebral amyloid angiopathy (CAA) is an age-associated disease characterized by amyloid deposition in cerebral and meningeal vessel walls. CAA is detected in the majority of the individuals with dementia and also in a large number of non-demented elderly individuals. In addition, CAA is strongly associated with Alzheimer's disease (AD) pathology. Mechanical consequences including intra-cerebral or subarachnoid hemorrhage remains CAA most feared complication, but only a small fraction of CAA results in severe bleeding. On the hand the non-mechanical consequences in cerebrovascular regulation are prevalent and may be even more deleterious. Studies of animal models have provided strong evidence linking the vasoactive A beta 1-40, the main species found in CAA, to disturbances in endothelial-dependent factors, disrupting cerebrovascular regulation Here, we aimed to review experimental findings regarding the non-mechanical consequences of CAA for cerebrovascular regulation and discuss the implications of these results to clinical practice. (C) 2012 Elsevier Inc. All rights reserved.