32 resultados para Apoptosis - physiology
Resumo:
Nitric oxide (NO) is produced by various mammalian cells and plays a variety of regulatory roles in normal physiology and in pathological processes. This article provides evidence regarding the participation of NO in UVB-induced skin lesions and in the modulation of skin cell proliferation following UVB skin irradiation. Hairless mice were subjected to UVB irradiation for 3 hours and the skin evaluated immediately, 6 and 24 hours postirradiation. The skin lipid peroxidation, and NO levels evaluated by chemiluminescence and inducible nitric oxide synthase (iNOS) and nitrotyrosine immunolabelling increased significantly 24 hours after irradiation and decreased under the treatment with aminoguanidine (AG). On the other hand, cell proliferation markers, PCNA and VEGF showed a strong labelling index when AG was used. The data indicate that NO mediates, at least in part, the lipid peroxidation and protein nitration and also promotes the down regulation of factors involved in cell proliferation. This work shows that the NO plays an important role in the oxidative stress damage and on modulation of cell proliferation pathways in UVB irradiated skin.
Resumo:
The course of leprosy depends of the host immune response which ranges from the lepromatous pole (LL) to the tuberculoid pole (TT). A comparative study was conducted in 60 patients with the LL and TT The results showed a mean expression of TGF-beta of 339 +/- 99.4 cells/field for TT and of 519.2 +/- 68.2 cells/field for LL. Frequency of apoptosis was 6.3 +/- 1.8 in TT and 14.0 +/- 6.1 in LL. A correlation (p = 0.0251) between TGF-beta and caspase-3 in the LL was found. This finding indicates a role of TGF-beta and apoptosis in the immune response in leprosy. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Osteosarcoma (OS) is the most common primary malignant bone tumor, usually developing in children and adolescents, and is highly invasive and metastatic, potentially developing chemoresistance. Thus, novel effective treatment regimens are urgently needed. This study was the first to investigate the anticancer effects of dehydroxymethylepoxyquinomicin (DHMEQ), a highly specific nuclear factor-kappa B (NF-kappa B) inhibitor, on the OS cell lines HOS and MG-63. We demonstrate that NF-kappa B blockade by DHMEQ inhibits proliferation, decreases the mitotic index, and triggers apoptosis of OS cells. We examined the effects of combination treatment with DHMEQ and cisplatin, doxorubicin, or methotrexate, drugs commonly used in OS treatment. Using the median effect method of Chou and Talalay, we evaluated the combination indices for simultaneous and sequential treatment schedules. In all cases, combination with a chemotherapeutic drug produced a synergistic effect, even at low single-agent cytotoxic levels. When cells were treated with DHMEQ and cisplatin, a more synergistic effect was obtained using simultaneous treatment. For the doxorubicin and methotrexate combination, a more synergistic effect was achieved with sequential treatment using DHMEQ before chemotherapy. These synergistic effects were accompanied by enhancement of chemoinduced apoptosis. Interestingly, the highest apoptotic effect was reached with sequential exposure in both cell lines, independent of the chemotherapeutic agent used. Likewise, DHMEQ decreased cell invasion and migration, crucial steps for tumor progression. Our data suggest that combining DHMEQ with chemotherapeutic drugs might be useful for planning new therapeutic strategies for OS treatment, mainly in resistant and metastatic cases. Anti-Cancer Drugs 23:638-650 (C) 2012 Wolters Kluwer Health broken vertical bar Lippincott Williams & Wilkins.
Glucocorticoid and Estrogen Receptors Are Reduced in Mitochondria of Lung Epithelial Cells in Asthma
Resumo:
Mitochondrial glucocorticoid (mtGR) and estrogen (mtER) receptors participate in the coordination of the cell's energy requirement and in the mitochondrial oxidative phosphorylation enzyme (OXPHOS) biosynthesis, affecting reactive oxygen species (ROS) generation and induction of apoptosis. Although activation of mtGR and mtER is known to trigger anti-inflammatory signals, little information exists on the presence of these receptors in lung tissue and their role in respiratory physiology and disease. Using a mouse model of allergic airway inflammation disease and applying confocal microscopy, subcellular fractionation, and Western blot analysis we showed mitochondrial localization of GR alpha and ER beta in lung tissue. Allergic airway inflammation caused reduction in mtGR alpha, mtER beta, and OXPHOS enzyme biosynthesis in lung cells mitochondria and particularly in bronchial epithelial cells mitochondria, which was accompanied by decrease in lung mitochondrial mass and induction of apoptosis. Confirmation and validation of the reduction of the mitochondrial receptors in lung epithelial cells in human asthma was achieved by analyzing autopsies from fatal asthma cases. The presence of the mitochondrial GR alpha and ER beta in lung tissue cells and especially their reduction in bronchial epithelial cells during allergic airway inflammation suggests a crucial role of these receptors in the regulation of mitochondrial function in asthma, implicating their involvement in the pathophysiology of the disease.
Resumo:
Polymorphonuclear leukocyte (PMNL) apoptosis is central to the successful resolution of inflammation. Since Somatic Cell Count (SCC) is an indicator of the mammary gland's immune status, this study sought to clarify the influence that these factors have on each other and on the evolution of the inflammatory process. Milk samples were stained with annexin-V, propidium iodide (PI), primary antibody anti-CH138A. Negative correlation between SCC and PMNL apoptosis was found, and a statistical difference between high SCC group and low SCC group was observed concerning the rate of viable PMNL, apoptotic PMNL, necrotic PMNL and necrotic and/or apoptotic PMNL. Overall, the high cellularity group presented lower proportions of CH138+ cells undergoing apoptosis and higher proportions of viable and necrotic CH138+ cells. Thus, it can be concluded that PMNL apoptosis and SCC are related factors, and that in high SCC, milk apoptosis is delayed. Although there is a greater amount of active phagocytes in this situation, apoptosis' anti-inflammatory effects are decreased, while necrosis' pro-inflammatory effects are increased, which can contribute to chronic inflammation.
Resumo:
Chronic administration of glucocorticoids (GC) leads to characteristic features of type 2 diabetes in mammals. The main action of dexamethasone in target cells occurs through modulation of gene expression, although the exact mechanisms are still unknown. We therefore investigated the gene expression profile of pancreatic islets from rats treated with dexamethasone using a cDNA array screening analysis. The expression of selected genes and proteins involved in mitochondria] apoptosis was further analyzed by PCR and immunoblotting. Insulin, triglyceride and free fatty acid plasma levels, as well as glucose-induced insulin secretion, were significantly higher in dexamethasone-treated rats compared with controls. Out of 1176 genes, 60 were up-regulated and 28 were down-regulated by dexamethasone treatment. Some of the modulated genes are involved in apoptosis, stress response, and proliferation pathways. RT-PCR confirmed the cDNA array results for 6 selected genes. Bax alpha protein expression was increased, while Bcl-2 was decreased. In vivo dexamethasone treatment decreased the mitochondrial production of NAD(P)H, and increased ROS production. Concluding, our data indicate that dexamethasone modulates the expression of genes and proteins involved in several pathways of pancreatic-islet cells, and mitochondria dysfunction might be involved in the deleterious effects after long-term GC treatment.
Resumo:
The aim was to analyze the protein expression of apoptotic genes caspase-3, caspase-8 and bcl-2 with the immunohistochemistry technique, correlating with tumor grade (I, II and III) and with the patient survival in order to understand the basic mechanism of tumoral transformation. The immunohistochemistry reactions on 50 samples of squamous cell carcinoma were carried out with the avidin-biotin immunoperoxidase method and antigen recovery. The analyses were made using the graduation method "in crosses" (0 to 4 crosses - no stain to more than 75% of positives cells) and in categories (low, intermediate, high) of the cytoplasm immunoreactivity of the epidermoid penile carcinoma cells. It was observed a statistically significant difference when the expression of caspase-3 were compared with the grades land II of the tumor (p=0.0010) and when comparing the patient survival with the grades I and II of the tumor (p=0.0212). The protein bcl-2 was more expressed than caspase-3 and caspase-8 proteins, suggesting that the apoptotic rate in this carcinoma is low. The higher expression of the anti-apoptotic protein bcl-2 suggests a higher preservation of the tumoral cells.
Resumo:
We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 x 10(6), CELL) intravenously 3 h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-beta, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
We previously reported the development of a lethal myeloid sarcoma in a non-human primate model utilizing retroviral vectors to genetically modify hematopoietic stem and progenitor cells. This leukemia was characterized by insertion of the vector provirus into the BCL2A1 gene, with resultant BCL2A1 over-expression. There is little information on the role of this anti-apoptotic member of the BCL2 family in hematopoiesis or leukemia induction. Therefore we studied the impact of Bcl2a1a lentiviral over-expression on murine hematopoietic stem and progenitor cells. We demonstrated the anti-apoptotic function of this protein in hematopoietic cells, but did not detect any impact of Bcl2a1a on in vitro cell growth or cell cycle kinetics. In vivo, we showed a higher propensity of HSCs over-expressing Bcl2a1a to engraft and contribute to hematopoiesis. Mice over-expressing Bcl2a1a in the hematologic compartment eventually developed an aggressive malignant disease characterized as a leukemia/lymphoma of B-cell origin. Secondary transplants carried out to investigate the primitive origin of the disease revealed the leukemia was transplantable. Thus, Bcl2a1 should be considered as a protooncogene with a potential role in both lymphoid and myeloid leukemogenesis, and a concerning site for insertional activation by integrating retroviral vectors utilized in hematopoietic stem cell gene therapy.
Resumo:
Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 mu M CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFN gamma through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPAR gamma receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2 alpha, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2 alpha induced by LPS/IFN gamma. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the 'oligoprotective' effects of CBD during inflammation. Cell Death and Disease (2012) 3, e331; doi:10.1038/cddis.2012.71; published online 28 June 2012
Resumo:
de Araujo CC, Silva JD, Samary CS, Guimaraes IH, Marques PS, Oliveira GP, do Carmo LGRR, Goldenberg RC, Bakker-Abreu I, Diaz BL, Rocha NN, Capelozzi VL, Pelosi P, Rocco PRM. Regular and moderate exercise before experimental sepsis reduces the risk of lung and distal organ injury. J Appl Physiol 112: 1206-1214, 2012. First published January 19, 2012; doi:10.1152/japplphysiol.01061.2011.-Physical activity modulates inflammation and immune response in both normal and pathologic conditions. We investigated whether regular and moderate exercise before the induction of experimental sepsis reduces the risk of lung and distal organ injury and survival. One hundred twenty-four BALB/c mice were randomly assigned to two groups: sedentary (S) and trained (T). Animals in T group ran on a motorized treadmill, at moderate intensity, 5% grade, 30 min/day, 3 times a week for 8 wk. Cardiac adaptation to exercise was evaluated using echocardiography. Systolic volume and left ventricular mass were increased in T compared with S group. Both T and S groups were further randomized either to sepsis induced by cecal ligation and puncture surgery (CLP) or sham operation (control). After 24 h, lung mechanics and histology, the degree of cell apoptosis in lung, heart, kidney, liver, and small intestine villi, and interleukin (IL)-6, KC (IL-8 murine functional homolog), IL-1 beta, IL-10, and number of cells in bronchoalveolar lavage (BALF) and peritoneal lavage (PLF) fluids as well as plasma were measured. In CLP, T compared with S groups showed: 1) improvement in survival; 2) reduced lung static elastance, alveolar collapse, collagen and elastic fiber content, number of neutrophils in BALF, PLF, and plasma, as well as lung and distal organ cell apoptosis; and 3) increased IL-10 in BALF and plasma, with reduced IL-6, KC, and IL-1 beta in PLF. In conclusion, regular and moderate exercise before the induction of sepsis reduced the risk of lung and distal organ damage, thus increasing survival.
Resumo:
Calegari VC, Abrantes JL, Silveira LR, Paula FM, Costa JM Jr, Rafacho A, Velloso LA, Carneiro EM, Bosqueiro JR, Boschero AC, Zoppi CC. Endurance training stimulates growth and survival pathways and the redox balance in rat pancreatic islets. J Appl Physiol 112: 711-718, 2012. First published December 15, 2011; doi:10.1152/japplphysiol.00318.2011.-Endurance training has been shown to increase pancreatic beta-cell function and mass. However, whether exercise modulates beta-cell growth and survival pathways signaling is not completely understood. This study investigated the effects of exercise on growth and apoptotic markers levels in rat pancreatic islets. Male Wistar rats were randomly assigned to 8-wk endurance training or to a sedentary control group. After that, pancreatic islets were isolated; gene expression and the total content and phosphorylation of several proteins related to growth and apoptotic pathways as well as the main antioxidant enzymes were determined by real-time polymerase chain reaction and Western blot analysis, respectively. Reactive oxygen species (ROS) production was measured by fluorescence. Endurance training increased the time to reach fatigue by 50%. Endurance training resulted in increased protein phosphorylation content of AKT (75%), AKT substrate (AS160; 100%), mTOR (60%), p70s6k (90%), and ERK1/2 (50%), compared with islets from control group. Catalase protein content was 50% higher, whereas ROS production was 49 and 77% lower in islets from trained rats under basal and stimulating glucose conditions, respectively. Bcl-2 mRNA and protein levels increased by 46 and 100%, respectively. Bax and cleaved caspase-3 protein contents were reduced by 25 and 50% in islets from trained rats, respectively. In conclusion, these results demonstrate that endurance training favors the beta-cell growth and survival by activating AKT and ERK1/2 pathways, enhancing antioxidant capacity, and reducing ROS production and apoptotic proteins content.
Resumo:
Zin WA, Silva AG, Magalhaes CB, Carvalho GM, Riva DR, Lima CC, Leal-Cardoso JH, Takiya CM, Valen a SS, Saldiva PH, Faffe DS. Eugenol attenuates pulmonary damage induced by diesel exhaust particles. J Appl Physiol 112: 911-917, 2012. First published December 22, 2011; doi: 10.1152/japplphysiol.00764.2011.-Environmentally relevant doses of inhaled diesel particles elicit pulmonary inflammation and impair lung mechanics. Eugenol, a methoxyphenol component of clove oil, presents in vitro and in vivo anti-inflammatory and antioxidant properties. Our aim was to examine a possible protective role of eugenol against lung injuries induced by diesel particles. Male BALB/c mice were divided into four groups. Mice received saline (10 mu l in; CTRL group) or 15 mu g of diesel particles DEP (15 mu g in; DIE and DEUG groups). After 1 h, mice received saline (10 mu l; CTRL and DIE groups) or eugenol (164 mg/kg; EUG and DEUG group) by gavage. Twenty-four hours after gavage, pulmonary resistive (Delta P1), viscoelastic (Delta P2) and total (Delta Ptot) pressures, static elastance (Est), and viscoelastic component of elastance (Delta E) were measured. We also determined the fraction areas of normal and collapsed alveoli, amounts of polymorpho- (PMN) and mononuclear cells in lung parenchyma, apoptosis, and oxidative stress. Est, Delta P2, Delta Ptot, and Delta E were significantly higher in the DIE than in the other groups. DIE also showed significantly more PMN, airspace collapse, and apoptosis than the other groups. However, no beneficial effect on lipid peroxidation was observed in DEUG group. In conclusion, eugenol avoided changes in lung mechanics, pulmonary inflammation, and alveolar collapse elicited by diesel particles. It attenuated the activation signal of caspase-3 by DEP, but apoptosis evaluated by TUNEL was avoided. Finally, it could not avoid oxidative stress as indicated by malondialdehyde.
Resumo:
Phosphoethanolamine (Pho-s) is a compound involved in phospholipid turnover, acting as a substrate for many phospholipids of the cell membranes, especially phosphatidylcholine. We recently reported that synthetic Pho-s has potent effects on a wide variety of tumor cells. To determine if Pho-s has a potential antitumor activity, in this study we evaluated the activity of Pho-s against the B16-F10 melanoma both in vitro and in mice bearing a dorsal tumor. The treatment of B16F10 cells with Pho-s resulted in a dose-dependent inhibition of cell proliferation. At low concentrations, this activity appears to be involved in the arrest of the cell cycle at G2/M, while at high concentrations Pho-s induces apoptosis. In accordance with these results, the loss of mitochondrial potential and increased caspase-3 activity suggest that Phos has dual antitumor effects; i.e. it induces apoptosis at high concentrations and modulates the cell cycle at lower concentrations. In vivo, we evaluated the effect of Pho-s in mice bearing B16-F10 melanoma. The results show that Pho-s reduces the tumoral volume increasing survival rate. Furthermore, the tumor doubling time and tumor delays were substantially reduced when compared with untreated mice. Histological analyses reveal that Pho-s induces changes in cell morphology, typical characteristics of apoptosis, in addition the large areas of necrosis correlating with a reduction of tumor size. The results presented here support the hypothesis that Pho-s has antitumor effects by the induction of apoptosis as well as the inhibition of cell proliferation by arrest at G2/M. Thus, Pho-s can be regarded as a promising agent for the treatment of melanoma. Published by Elsevier Masson SAS.
Resumo:
Background: Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF) are Chronic Myeloproliferative Neoplasms (MPN) characterized by clonal myeloproliferation/myeloaccumulation without cell maturation impairment. The JAK2 V617F mutation and PRV1 gene overexpression may contribute to MPN physiopathology. We hypothesized that deregulation of the apoptotic machinery may also play a role in the pathogenesis of ET and PMF. In this study we evaluated the apoptosis-related gene and protein expression of BCL2 family members in bone marrow CD34(+) hematopoietic stem cells (HSC) and peripheral blood leukocytes from ET and PMF patients. We also tested whether the gene expression results were correlated with JAK2 V617F allele burden percentage, PRV1 overexpression, and clinical and laboratory parameters. Results: By real time PCR assay, we observed that A1, MCL1, BIK and BID, as well as A1, BCLW and BAK gene expression were increased in ET and PMF CD34(+) cells respectively, while pro-apoptotic BAX and anti-apoptotic BCL2 mRNA levels were found to be lower in ET and PMF CD34(+) cells respectively, in relation to controls. In patients' leukocytes, we detected an upregulation of anti-apoptotic genes A1, BCL2, BCL-XL and BCLW. In contrast, pro-apoptotic BID and BIMEL expression were downregulated in ET leukocytes. Increased BCL-XL protein expression in PMF leukocytes and decreased BID protein expression in ET leukocytes were observed by Western Blot. In ET leukocytes, we found a correlation between JAK2 V617F allele burden and BAX, BIK and BAD gene expression and between A1, BAX and BIK and PRV1 gene expression. A negative correlation between PRV1 gene expression and platelet count was observed, as well as a positive correlation between PRV1 gene expression and splenomegaly. Conclusions: Our results suggest the participation of intrinsic apoptosis pathway in the MPN physiopathology. In addition, PRV1 and JAK2 V617F allele burden were linked to deregulation of the apoptotic machinery.