5 resultados para Parametric VaR (Value-at-Risk)
em Repositorio Institucional Universidad EAFIT - Medelin - Colombia
Resumo:
La estimación y gestión del riesgo con la evolución del mercado ha tomado gran relevancia, principalmente en el sector financiero y de capitales, no obstante las variables macroeconómicas que afectan el riesgo en el tiempo son cada vez más volátiles y generan un mayor nivel de incertidumbre; se puede presentar en igual medida o con un mayor impacto en empresas del sector real, principalmente en aquellas cuyas condiciones de valoración causan un mayor impacto para los inversionistas, tal es el caso de las Asociaciones Público Privadas, mecanismos de contratación que vinculan al sector privado con el público en el desarrollo de proyectos de mayor nivel, donde se requiere establecer la valoración y cuantificación del riesgo que cada una de las partes está dispuesto a asumir -- Hoy por hoy existen métodos de medición sofisticados que permiten la estimación del Value at Risk (VaR), los cuales han sido desarrollados principalmente por el sistema financiero, sin contar con una aplicación en el sector real -- Es por eso que surge la necesidad de esta investigación para obtener una metodología que permita estimar el VaR bajo los conceptos teóricos de economía, estadística y simulación
Resumo:
En la actualidad hay una especial preocupación de los inversionistas por realizar sus inversiones de manera más segura, obteniendo una buena rentabilidad y sin poner en riesgo su capital -- En este sentido, la posibilidad de generar nuevas herramientas que permitan tomar mejores decisiones de inversión es cada vez más relevante en el mundo financiero -- Así, uno de los aportes más importantes de los que se dispone para ese propósito es el de Markowitz, que propone la generación de carteras óptimamente diversificadas -- Sin embargo, el problema es cómo escoger entre algunas de estas carteras -- Por ese motivo, este proyecto tuvo como objetivo comparar el modelo de la desviación estándar (Ratio de Sharpe) con el de Value at Risk (VaR) como concepto de riesgo, para la elección de una cartera óptima dentro del entorno de un mercado desarrollado, en este caso, el mercado estadounidense, por medio de un backtesting se analizó también si el ciclo de mercado bajista, estable o alcista tiene incidencia de igual forma en esta elección -- Después de realizar el modelo y aplicarlo se concluyó que bajo situaciones normales, en un mercado desarrollado, elegir una cartera sobre otra tuvo mayores beneficios si se realiza teniendo en cuenta como concepto de riesgo el VaR bajo un modelo de Simulación de Montecarlo, en lugar de la desviación estándar -- Al aplicar este modelo a un entono menos desarrollado y más fluctuante como el colombiano, se determinó que no hay una ventaja significativa entre los dos modelos (desviación estándar y VaR)
Resumo:
Este estudio empírico compara la capacidad de los modelos Vectores auto-regresivos (VAR) sin restricciones para predecir la estructura temporal de las tasas de interés en Colombia -- Se comparan modelos VAR simples con modelos VAR aumentados con factores macroeconómicos y financieros colombianos y estadounidenses -- Encontramos que la inclusión de la información de los precios del petróleo, el riesgo de crédito de Colombia y un indicador internacional de la aversión al riesgo mejora la capacidad de predicción fuera de la muestra de los modelos VAR sin restricciones para vencimientos de corto plazo con frecuencia mensual -- Para vencimientos de mediano y largo plazo los modelos sin variables macroeconómicas presentan mejores pronósticos sugiriendo que las curvas de rendimiento de mediano y largo plazo ya incluyen toda la información significativa para pronosticarlos -- Este hallazgo tiene implicaciones importantes para los administradores de portafolios, participantes del mercado y responsables de las políticas
Resumo:
Investors value the special attributes of monetary assets (e.g., exchangeability, liquidity, and safety) and pay a premium for holding them in the form of a lower return rate -- The user cost of holding monetary assets can be measured approximately by the difference between the returns on illiquid risky assets and those of safer liquid assets -- A more appropriate measure should adjust this difference by the differential risk of the assets in question -- We investigate the impact that time non-separable preferences has on the estimation of the risk-adjusted user cost of money -- Using U.K. data from 1965Q1 to 2011Q1, we estimate a habit-based asset pricing model with money in the utility function and find that the risk adjustment for risky monetary assets is negligible -- Thus, researchers can dispense with risk adjusting the user cost of money in constructing monetary aggregate indexes
Resumo:
Purpose – Curve fitting from unordered noisy point samples is needed for surface reconstruction in many applications -- In the literature, several approaches have been proposed to solve this problem -- However, previous works lack formal characterization of the curve fitting problem and assessment on the effect of several parameters (i.e. scalars that remain constant in the optimization problem), such as control points number (m), curve degree (b), knot vector composition (U), norm degree (k), and point sample size (r) on the optimized curve reconstruction measured by a penalty function (f) -- The paper aims to discuss these issues -- Design/methodology/approach - A numerical sensitivity analysis of the effect of m, b, k and r on f and a characterization of the fitting procedure from the mathematical viewpoint are performed -- Also, the spectral (frequency) analysis of the derivative of the angle of the fitted curve with respect to u as a means to detect spurious curls and peaks is explored -- Findings - It is more effective to find optimum values for m than k or b in order to obtain good results because the topological faithfulness of the resulting curve strongly depends on m -- Furthermore, when an exaggerate number of control points is used the resulting curve presents spurious curls and peaks -- The authors were able to detect the presence of such spurious features with spectral analysis -- Also, the authors found that the method for curve fitting is robust to significant decimation of the point sample -- Research limitations/implications - The authors have addressed important voids of previous works in this field -- The authors determined, among the curve fitting parameters m, b and k, which of them influenced the most the results and how -- Also, the authors performed a characterization of the curve fitting problem from the optimization perspective -- And finally, the authors devised a method to detect spurious features in the fitting curve -- Practical implications – This paper provides a methodology to select the important tuning parameters in a formal manner -- Originality/value - Up to the best of the knowledge, no previous work has been conducted in the formal mathematical evaluation of the sensitivity of the goodness of the curve fit with respect to different possible tuning parameters (curve degree, number of control points, norm degree, etc.)