6 resultados para Rotary engines.
em Repositório Institucional da Universidade Estadual de São Paulo - UNESP
Resumo:
This work is part of several research related to the plan of design and construction of a sustainable house. The previous researches focused on sustainable materials and it have shown that ceramic material are more interesting to improve the thermal comfort and the reduction of fees and prices of the house, making possible to construct popular home, mainly clay bricks, that have high thermal inertia and low costs, besides the fact that it is easy to find the raw materials in nature and process them. However, a major issue in using clay bricks is that it uses too many energy to be processed during the sintering (burning), a crucial part of the process that assures mechanical resistance. Alternative materials are being proposed by the researchers, as the clay bricks without the sintering mixed with Portland cement, assuring the proper resistance to the brick. Raw materials of cement, however, also need to be thermally processed in rotary kilns, in a process called clinckerization. This research was proposed for comparing the energy used by the two types of bricks and other objectives, in order to determinate which one uses less thermal energy. The intention was to compare the energy used during the sintering of regular clay bricks and the unfired bricks with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of Portland cement. The paper also investigated and compared the use of electrical and thermal energy of all the bricks to identify how important were the thermal stages (sintering or clinkerization) relatively to the total energy spent. At last, a resumed analysis was performed to identify the possible health damages of the many life cycles of the bricks. The conclusion was that unfired bricks with less than 40% of cement use less thermal energy to be processed. In addition, their carbon dioxides emissions were less dangerous to ... (Complete abastract click electronic access below)
Resumo:
Currently there are two car models that use electricity in their propulsion systems, the electric vehicle and the hybrid electric vehicle. The electric vehicles are classified as vehicles that use electric motors in their propulsion system and batteries as a power source, on the other hand, the hybrid vehicles are classified as vehicles that use both electric motors and internal combustion engines in their propulsion system, using both batteries and líquid fuels as a power source. The main goal of this work is to analyze the characteristics of electric and hybrid electric vehicles and demonstrate the unfeasibility of the electric vehicle in the current economic, political, energetic and environmental brazilian scenario, for this purpose it was realized a study about the current brazilian situation regarding to electricity generation, current conservation status of road network, lack of electrical infrastructure for charging batteries, national lithium reserves, environmental characteristics, tax incentives, economic scenario, oil market and political positioning related to the implantation of electric or hybrid electric fleets in nacional territory. The operational characteristics analysis of electric and hybrid electric vehicles in this current scenario leads to the conclusion that currently a growth of electric vehicles fleets on a national scale is totally impractical in the Brazil, Thus, the introduction of green vehicles probably will occur primarily with hybrid electric models, motivated mainly due the bigger autonomy of this models compared to electric models, lower cost of hybrid electric models compared to electric models, factors related to the lack of recharging infrastructure and also factors related to political positioning
Resumo:
The intended purpose of this paper is to present the main aspects of natural gas applied to the public transportation as well as the environmental, economical and technical impacts in this sector. Also it is given specific information to be considered when comparing natural gas to other fuels, specially the diesel. At this point is presented the types of internal combustion engines (Otto and Diesel cycle) and which type is used in each vehicle. Moreover, it is presented the main standards pollutant emission (Euro, US and Proconve) with a brief explanation of the tests made in order to approve the engines. This paper is focused on heavy duty vehicles. Also in this paper is exposed the economic impact due to the natural gas use in the public transportation fleet. In addition is presented a real case (of Berlin) and an estimative to a Brazilian city, presenting the potential of natural gas as vehicular fuel in Brazil, as well as financial and environmental aspects of the substitution
Resumo:
With advances in health care, has been na increase of demand for material that could replace the functions of the human body parts, thus evolved biomedic prosthesis which today are responsible for the constant improvement of the quality of life. The Titanium alloys are widely used as implants due to its properties, like high mechanical resistance, biocompatibility and corrosion resistance, and the addition alloying elements like Zirconium, may improve some of those properties. Such properties are related to the microstructure and consequently to the type of processing performed. The purpose of this dissertation was to characterize the experimental alloy Ti15Zr after route of processsing and heat treatment in order to extend the knowledge about this alloy. The latter has been abtained by fusion of pure metals in a arc melting furnace with an inert argon atmosphere. The material has been homogenized in a tube furnace at 950ºC for 24h and cold worked by swaging, after that, bars with 10 mm of diameter were obtained by the process of rotary forging. The samples were solubilized at 900º C for 2 hours and quenched in water. After that, 4 samples were submitted to the aging, at 400º C, 450º C, 500º C and 550º C. The microstructure and phase analysis was done by optical microscopy and X-rays diffraction (XRD), the mechanical characterization was carried out by microhardness test and finally, evaluation of corrosion resistance of the alloy by electrochemical tests. The XRD and the optical microscopy made it possible to analyze that the heat treatment influenced the phase shifting from α to α', and probably affected the alloy hardness, at the first aged sample at 500º Chas been a sudden increase in the value of hardness, probably by appearance of omega phase, unwanted phase to the medical application duo to great fragility, and finally ... (Complete abstract click electronic access below)
Resumo:
Considering that the Brazilian energy source is based on hydroelectric power plants, every moment that it does not rain enough, we are likely to suffer power outage. Making the rational use of energy not only is wise, but also important for financial issues. The industrial sector is of great importance to Brazilian economic context, because it is one that creates more wealth and jobs. It should be noted that it is one of the sectors that consume more electricity. One of the most used equipment in industry is the three phase induction motor, which ends up providing significant waste of energy. For that reasons, studying three phase induction motors is important. One of the ways to evaluate the parameter of the three phase induction motor is using a dynamometer mechanic or electric. This work aims at further studies (and development) of electrodynamometer brake, a type of electrical dynamometer, that is the only one with reversible use. This means, it is possible to measure both the torque and the power transmitted by the electric motors, by the direct method and the indirect. Besides it allows greater stability in the imposition of charges, due to its nature of being able to regenerate the energy imparted by the engines being tested
Resumo:
This work intends to know the most types of ignition systems, studying its history, the way it works, applications and some examples. The assembly of a distributor less ignition system is also required. All vehicles powered by internal combustion engines need an ignition system that allows this engine to ignite the air-fuel mixture using its ignition system in the best possible manner. The main goal of an ignition system is to obtain a spark having enough energy to start the chemical reaction of the oxygen and the fuel. It took a study dealing with the various types of ignition systems since their creation at the beginning of the last century until 2015. The work starts studying the high tension magneto ignition system and later together with the low tension ignition system, going on with the conventional ignition system and finally accomplishing with the various types of electronic ignition systems. It was studied and implemented an electronic circuit to power a double spark ignition system also known as wasted spark ignition system. This circuit was assembled with an electric pulse generator and powered mechanically by a dc electric motor of the variable rpm type