6 resultados para optimización matemática
em Repositorio Institucional de la Universidad de Málaga
Resumo:
La optimización de carteras de inversión presenta un gran número de dificultades, siendo una de las más importantes la gestión de la incertidumbre que surge en diferentes aspectos del proceso. Este trabajo propone matizar esta última mejorando la robustez de las soluciones mediante el uso de $\epsilon$-vecindarios combinados con un mecanismo de remuestreo basado en marcas temporales. La aproximación se ha incorporado a cuatro metaheurísticas multi-objetivo del estado del arte, que se han evaluado sobre un histórico bastante amplio de activos. Los resultados han mostrado una mejora significativa de la fiabilidad de la frontera eficiente estimada.
Resumo:
Ligand-protein docking is an optimization problem based on predicting the position of a ligand with the lowest binding energy in the active site of the receptor. Molecular docking problems are traditionally tackled with single-objective, as well as with multi-objective approaches, to minimize the binding energy. In this paper, we propose a novel multi-objective formulation that considers: the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands and the binding (intermolecular) energy, as two objectives to evaluate the quality of the ligand-protein interactions. To determine the kind of Pareto front approximations that can be obtained, we have selected a set of representative multi-objective algorithms such as NSGA-II, SMPSO, GDE3, and MOEA/D. Their performances have been assessed by applying two main quality indicators intended to measure convergence and diversity of the fronts. In addition, a comparison with LGA, a reference single-objective evolutionary algorithm for molecular docking (AutoDock) is carried out. In general, SMPSO shows the best overall results in terms of energy and RMSD (value lower than 2A for successful docking results). This new multi-objective approach shows an improvement over the ligand-protein docking predictions that could be promising in in silico docking studies to select new anticancer compounds for therapeutic targets that are multidrug resistant.
Resumo:
Production companies use raw materials to compose end-products. They often make different products with the same raw materials. In this research, the focus lies on the production of two end-products consisting of (partly) the same raw materials as cheap as possible. Each of the products has its own demand and quality requirements consisting of quadratic constraints. The minimization of the costs, given the quadratic constraints is a global optimization problem, which can be difficult because of possible local optima. Therefore, the multi modal character of the (bi-) blend problem is investigated. Standard optimization packages (solvers) in Matlab and GAMS were tested on their ability to solve the problem. In total 20 test cases were generated and taken from literature to test solvers on their effectiveness and efficiency to solve the problem. The research also gives insight in adjusting the quadratic constraints of the problem in order to make a robust problem formulation of the bi-blend problem.
Resumo:
Facility location concerns the placement of facilities, for various objectives, by use of mathematical models and solution procedures. Almost all facility location models that can be found in literature are based on minimizing costs or maximizing cover, to cover as much demand as possible. These models are quite efficient for finding an optimal location for a new facility for a particular data set, which is considered to be constant and known in advance. In a real world situation, input data like demand and travelling costs are not fixed, nor known in advance. This uncertainty and uncontrollability can lead to unacceptable losses or even bankruptcy. A way of dealing with these factors is robustness modelling. A robust facility location model aims to locate a facility that stays within predefined limits for all expectable circumstances as good as possible. The deviation robustness concept is used as basis to develop a new competitive deviation robustness model. The competition is modelled with a Huff based model, which calculates the market share of the new facility. Robustness in this model is defined as the ability of a facility location to capture a minimum market share, despite variations in demand. A test case is developed by which algorithms can be tested on their ability to solve robust facility location models. Four stochastic optimization algorithms are considered from which Simulated Annealing turned out to be the most appropriate. The test case is slightly modified for a competitive market situation. With the Simulated Annealing algorithm, the developed competitive deviation model is solved, for three considered norms of deviation. At the end, also a grid search is performed to illustrate the landscape of the objective function of the competitive deviation model. The model appears to be multimodal and seems to be challenging for further research.
Resumo:
Obnoxious single facility location models are models that have the aim to find the best location for an undesired facility. Undesired is usually expressed in relation to the so-called demand points that represent locations hindered by the facility. Because obnoxious facility location models as a rule are multimodal, the standard techniques of convex analysis used for locating desirable facilities in the plane may be trapped in local optima instead of the desired global optimum. It is assumed that having more optima coincides with being harder to solve. In this thesis the multimodality of obnoxious single facility location models is investigated in order to know which models are challenging problems in facility location problems and which are suitable for site selection. Selected for this are the obnoxious facility models that appear to be most important in literature. These are the maximin model, that maximizes the minimum distance from demand point to the obnoxious facility, the maxisum model, that maximizes the sum of distance from the demand points to the facility and the minisum model, that minimizes the sum of damage of the facility to the demand points. All models are measured with the Euclidean distances and some models also with the rectilinear distance metric. Furthermore a suitable algorithm is selected for testing multimodality. Of the tested algorithms in this thesis, Multistart is most appropriate. A small numerical experiment shows that Maximin models have on average the most optima, of which the model locating an obnoxious linesegment has the most. Maximin models have few optima and are thus not very hard to solve. From the Minisum models, the models that have the most optima are models that take wind into account. In general can be said that the generic models have less optima than the weighted versions. Models that are measured with the rectilinear norm do have more solutions than the same models measured with the Euclidean norm. This can be explained for the maximin models in the numerical example because the shape of the norm coincides with a bound of the feasible area, so not all solutions are different optima. The difference found in number of optima of the Maxisum and Minisum can not be explained by this phenomenon.
Resumo:
Technologies for Big Data and Data Science are receiving increasing research interest nowadays. This paper introduces the prototyping architecture of a tool aimed to solve Big Data Optimization problems. Our tool combines the jMetal framework for multi-objective optimization with Apache Spark, a technology that is gaining momentum. In particular, we make use of the streaming facilities of Spark to feed an optimization problem with data from different sources. We demonstrate the use of our tool by solving a dynamic bi-objective instance of the Traveling Salesman Problem (TSP) based on near real-time traffic data from New York City, which is updated several times per minute. Our experiment shows that both jMetal and Spark can be integrated providing a software platform to deal with dynamic multi-optimization problems.