4 resultados para Mobile and ubiquitous computing
em Repositorio Institucional de la Universidad de Málaga
Resumo:
The suitable operation of mobile robots when providing Ambient Assisted Living (AAL) services calls for robust object recognition capabilities. Probabilistic Graphical Models (PGMs) have become the de-facto choice in recognition systems aiming to e ciently exploit contextual relations among objects, also dealing with the uncertainty inherent to the robot workspace. However, these models can perform in an inco herent way when operating in a long-term fashion out of the laboratory, e.g. while recognizing objects in peculiar con gurations or belonging to new types. In this work we propose a recognition system that resorts to PGMs and common-sense knowledge, represented in the form of an ontology, to detect those inconsistencies and learn from them. The utilization of the ontology carries additional advantages, e.g. the possibility to verbalize the robot's knowledge. A primary demonstration of the system capabilities has been carried out with very promising results.
Resumo:
Sensor networks are becoming popular nowadays in the development of smart environments. Heavily relying on static sensor and actuators, though, such environments usually lacks of versatility regarding the provided services and interaction capabilities. Here we present a framework for smart environments where a service robot is included within the sensor network acting as a mobile sensor and/or actuator. Our framework integrates on-the-shelf technologies to ensure its adaptability to a variety of sensor technologies and robotic software. Two pilot cases are presented as evaluation of our proposal.
Resumo:
Telepresence robots have emerged as a new means of interaction in remote environments. However, the use of such robots is still limited due to safety and usability issues when operating in human-like environments. This work addresses these issues by enhancing the robot navigation through a collaborative control method that assists the user to negotiate obstacles. The method has been implemented in a commercial telepresence robot and a user study has been conducted in order to test the suitability of our approach.
Resumo:
The diversity in the way cloud providers o↵er their services, give their SLAs, present their QoS, or support di↵erent technologies, makes very difficult the portability and interoperability of cloud applications, and favours the well-known vendor lock-in problem. We propose a model to describe cloud applications and the required resources in an agnostic, and providers- and resources-independent way, in which individual application modules, and entire applications, may be re-deployed using different services without modification. To support this model, and after the proposal of a variety of cross-cloud application management tools by different authors, we propose going one step further in the unification of cloud services with a management approach in which IaaS and PaaS services are integrated into a unified interface. We provide support for deploying applications whose components are distributed on different cloud providers, indistinctly using IaaS and PaaS services.