5 resultados para 1205 Teoría de números
em Repositorio Institucional de la Universidad de El Salvador
Resumo:
Nuestro principal objetivo en este trabajo será seguir el artículo en el que consideran una órbita del “mapeo doblamiento”, shift: σ t → 2t en R=Z (este es el mapeo cuadrático cuando pensamos a R=Z como el círculo unitario en el plano complejo). Llamaremos a un subconjunto cerrado A de R=Z ordenado bajo σ si A es invariante (esto es σ (A) = A) y si σ preserva el orden cíclico de los puntos de A. Tales conjuntos tienen asignado un número de rotación, que lo llamamos así porque se parece mucho al que definimos en homeomorfismos del círculo, otra manera de ver el número de rotación es tomar la expansión decimal de cualquier t en A y luego calcular la frecuencia con la cual el dígito ’1’ se produce en esta expansión binaria. En este trabajo nos preocuparemos por dar una clasificación completa de los subconjuntos A que cumplen con ser ordenados, explícitamente daremos un algoritmo para su construcción, algunas propiedades de teoría de números, una generalización de la noción de orden y una caracterización del orden de todos los puntos alrededor de R=Z
Resumo:
Dentro de la teoría de números, la ley de reciprocidad cuadrática está definida como una de las más útiles, desde que fue enunciada en 1772 por Euler. En este trabajo se presenta la Ley de Reciprocidad Cuadrática y da a conocer mediante ejemplos el funcionamiento y la importancia de ésta en la Teoría Elemental de Números. Desarrolla los teoremas básico en la teoría de números (axiomas de suma, de multiplicación y resultados de divisibilidad) aborda la teoría de congruencias lineales y cuadráticas con módulo primo y el criterio de Euler para residuos cuadráticos, observando asimismo, el símbolo de Legendre y sus propiedades. Se concluye con la afirmación de que la Ley de Reciprocidad Cuadrática proporciona un método práctico para determinar el carácter cuadrático de un número, ayudando a determinar la solubilidad de las congruencias cuadráticas, del mismo modo, contribuye también a calcular símbolos Legendre de una forma más sencilla demostrando si un número tiene raíz primitiva de un primo.
Resumo:
El estudio de los sistemas dinámicos es un campo importante de la investigación matemática actual. Estos pueden ser clasificados como sistemas dinámicos clásicos y sistemas dinámicos 100% discretos. A su vez los sistemas dinámicos clásicos se pueden dividir en sistemas dinámicos discretos y sistemas dinámicos continuos. El estudio de los sistemas dinámicos clásicos involucra herramientas de cálculo y geometría diferencial. En cambio los sistemas dinámicos 100% discretos se requiere utilizar herramientas de teoría de números, álgebra, combinatoria y teoría de grafos. Históricamente, los sistemas dinámicos llamados finitos sistemas dinámicos discretos no han recibido en modo alguna atención como la han tenido los sistemas continuos. Hay por supuesto muchas razones para esto, una de las cuales es el uso exitoso de las Ecuaciones Diferenciales Ordinarias (EDO’s) y Ecuaciones Diferenciales Parciales (EDP’s) como herramientas analíticas y descriptivas en las ciencias y sus aplicaciones.
Resumo:
La matemática actual se caracteriza por el predominio del álgebra, y se habla a menudo de la algebrización de todas las ramas de la tradicional matemática. Esta tendencia se origina en los trabajos geniales de Galois para dar solución definitiva al problema de hallar las raíces de las ecuaciones algebraicas, de donde surgió la noción de grupo. Más tarde apareció la teoría abstracta de grupos y otras teorías, como las de cuaternios y de matrices. Además tanto los cuaternios como las matrices contradicen la ley conmutativa de la multiplicación de números, según la cual el orden de los factores no altera el producto, como en el caso de las geometrías no euclidianas, se llegó por esta vía a un grado de abstracción mayor de las operaciones aritméticas y algebraicas, que se definen hoy únicamente por los axiomas que se desee que cumplan. En la actualidad el Álgebra Abstracta juega un papel muy importante en el estudio de la Matemática ya que en ella se involucran diversidad de contenidos lo que se centra en el estudio de conjuntos, estructura de grupo, categorías, anillos, módulos en donde estos se dividen en las importantes ramas de Campos y Teoría de Galois, Álgebra lineal, Anillos conmutativos y módulos y estructura de anillos entre otros. Toda esta teoría contribuye al estudio del álgebra homológica dentro de la cual se prende desarrollar la Teoría de multiplicidad y en base a esta poder demostrar la fórmula límite de Samuel.
Resumo:
Los Grupos Libres son una área de la Teoría de Grupos, que no es profundizada en la Licenciatura en Matemática, esto, debido al bajo contenido en algebra que posee el pensum, razón por la cual, el propósito del trabajo es mostrarse como una opción para una materia electiva. Con toda la investigación y desarrollo realizado, se ha creado un trabajo apto para que un estudiante pueda leerlo y comprenderlo por sí solo, ya que posee todas las herramientas básicas para su completo entendimiento. Se ha descrito paso a paso, el proceso realizado para la demostración de los teoremas, lemas, proposiciones y corolarios, al igual que los ejercicios, que ayudan a la comprensión de los capítulos. Algunos de los ejemplos presentados son de utilidad para la demostración de los teoremas más importantes. Estos resultados relevantes fueron los objetivos trazados al inicio de la investigación. Dentro del proceso realizado durante el desarrollo del tema está, la intensa búsqueda bibliográfica en libros, revistas y artículos en internet, del cual se escogió lo más importante que permitió obtener como resultado los capítulos con la información principal, en la que se fueron desarrollando los teoremas, corolarios, lemas y proposiciones, a esto se le agregaron los diferentes tipos de ejercicios resueltos. Finalizando con la presentación de los resultados.