5 resultados para slaughter
em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)
Resumo:
Headcheese is a meat sausage originated from Europe made from hog slaughter by-products. It is a much appreciated product in the South of Brazil which is increasingly established in the market, however it does not have official regulations yet. This study aimed to present the physicochemical characterization of headcheese in a western Santa Catarina industry supervised by Companhia Integrada de Desenvolvimento Agrícola de Santa Catarina and assess 10 different brands to find the relationship between chemical composition and texture profile analysis (TPA). Thus, the chemical composition, energy value, total nitrite, lipid oxidation and physical parameters (color and texture) were evaluated. The product exhibited great variability in moisture content, lipid and protein because the different formulations, processing and intrinsic and extrinsic characteristics of raw material. The utilization of offal provided higher cholesterol and iron levels, and the high content of collagen was accountable for the shear force responses (7.84 ± 1.68 N). The product showed higher amount of sodium, due to the use of additives, but calcium levels were compatible with other sausages. There was a predominance of polyunsaturated fatty acids and polyunsaturated fatty acids/saturated fatty acids ratio was more favorable than other sausage in the same category. Nitrite assured preservation effects and thus lower product levels of oxidation were observed. The high Water Activity and pH 6.5 showed that the product is susceptible to growth of pathogens and requires cooling for preservation. Its brownish occurred due to cooking and production of metmyoglobin. There was a strong positive correlation between collagen and attributes of TPA, especially for chewiness (r = 0.855). The use of Hierarchical Cluster Analysis and Principal Component Analysis were able to separate three groups based on the amount of collagen and texture attributes, especially hardness, gumminess and chewiness.
Resumo:
The current scenario of the Brazilian poultry production is defined by high productivity motivated by exports to markets with elevated levels of sanitary requirement. The work aimed to evaluate the efficacy of chlorinated compounds (chlorine dioxide, dichloro and trichloro) and organic acids (citric, lactic and peracetic acids) in reducing the contamination of poultry by Salmonella spp., mesophiles and enterobacteriaceae. Were isolated 102 strains Salmonella spp. poultry carcass from June to September 2014. Strains were identified by PCR. Was determined the minimum inhibitory concentration (MIC) of antimicrobial compounds for the standard strains of S. Typhimurium, S. Enteritidis and S. Heidelberg. MIC of lactic acid and peracetic acid (20 to 10 g/L) was applied in strains of Salmonella spp. isolated from the slaughter. The MIC of the compounds lactic acid and sodium dichloro was applied in contaminated chiller water with Salmonella (109 CFU/mL) and this was determined Salmonella count in water. Thighs and drumsticks poultry were contaminated with S. Heidelberg (109 UFC/mL) and were applied dichloro (60 mg/L), lactic acid (20 g/L) and sodium hypochlorite (5,0 and 0,5 mg/L) compounds. In the identification by PCR, 93,1% of the strains were identified as Salmonella. For sodium dichloro the MIC was 60 mg/L for 15 minutes to S. Heidelberg and 60 mg/L for 20 minutes for S. Enteritidis. Lactic acid presented MIC of the 5 g/L for 10 minutes to S. Enteritidis 10 g/L for 15 minutes to S. Typhimurium and 20 g/L for 20 minutes to S. Heidelberg. For peracetic acid, MICs were 10 g/L for 10 minutes to S. Typhimurium and S. Heidelberg and 10 g/L for 20 minutes to S. Enteritidis. To citric acid, MICs were 10 g/L for 10 minutes to S. Typhimurium and S. Enteritidis and 25 g/L for 20 minutes to S. Heidelberg. In the isolated Salmonella strains, lactic acid inhibited 97,89% of the strains and peracetic inhibited 100% of the strains. In contaminated chiller water, the compounds reduced the growth of standards strains. When applied to contaminated poultry meat, there was a reduction of Salmonella spp. 1,06 log10 CFU/g relative to the positive control with the use of sodium hypochlorite at 5,0 mg/L, 0,97 log10 CFU/g with dichloro and 0,56 log10 CFU/g with sodium hypochlorite 0,5 mg/L. For mesophiles reduction observed was 0,90 log10 CFU/g relative to the positive control with the use of sodium hypochlorite at 5,0 mg/L, 0,83 log10 CFU/g with dichloro and there isn´t reduction with hypochlorite with sodium 0,5 mg/L. For enterobacteriaceae reduction was 1,0 log10 CFU/g relative to the positive control with the use of sodium hypochlorite at 5,0 mg/L, 0,79 log10 CFU/g with dichloro and 0,22 log10 CFU/g with sodium hypochlorite at 0,5 mg/L. Lactic acid inhibit growth of the microorganisms tested. The data supports the discussions to regulate the use of the technology coadjuvants in the slaughter of poultry.
Resumo:
Brazil is the third largest producer and exporter of turkey meat, especially in Paraná state, with the largest production volume. In worldwide the animal welfare is a prerequisite for food quality of animal origin, especially in Europe. The Regulation of European Community No 1099/2009 provides requirements for poultry stunning that associate with animal welfare as a means to minimize the pain and suffering from the slaughter. Improper application of callousness should produce low-quality meat, and significant industry losses. This Research aimed to evaluate the impacts on the quality of meat from turkeys, applying electrical stunning parameters established in the Regulation No 1099/2009 of the Council of 24 September 2009. Was applied an outline with 8 tests set equidistantly to frequency, and set parameters for current and voltage, and a control test. Were conducted qualitative assessments of hematoms and bruises / fractures in carcasses, hematoms, blood splashed and bleeding in turkey breast, and quantitative pH, color (L *), water holding capacity and shear force in turkey breast. The individual assessments showed no significant difference (p>0,05). In multivariate cluster analysis was the formation of two distinct groups: group 1 - 50 Hz to 200 Hz (low frequency) and group 2 - 633 Hz to 1500 Hz (high frequency), which showed significant difference (p= 0,016). In principal component analysis multivariate, the group 1 tend to have a higher incidence of bruising, blood splashed, bleeding and water holding capacity in breast turkeys, and bruises / fractures and hematoms on carcasses. The Group 2 tends to have a lower incidence of these parameters, and higher pH values, shear force and color (L *). Positive correlation was obtained for the parameters pH and shear force (r= 0.7506, p=0.0198); bleeding and splashed blood (r= 0.8811, p= 0.0017), and negative correlation to color (L*) and splashed blood on breast (r= -0.7889; p= 0.0115); breast hematoms and shear force (r= -0.7844; p= 0.0123). It has been observed that at lower frequencies stunning tends to have higher incidence of defects in the carcasses and turkey breast. The use of high frequencies in stunning, create smaller quantity of trimming, and an increase in turkey breast volume produced, with a financial gain of approximately R$250,000.00 / year. Moreover, there is no need increase the workers to do the trimming tasks and, therefore, higher financial results for companies. Therefore, we recommend the use of high frequencies in the stunning of turkeys.
Resumo:
The pig slaughter process involve different steps that can influence the microbiological quality of carcasses. At this, the understanding of the slaughter process on the microbiological aspects is necessary for the implementation and evaluation of critical control points. The microbiological control of the slaughter process should involve the evaluation of pathogens prevalence and levels of quality and hygiene indicator microorganisms. This study aimed at investigating the influence of steps slaughter process on the microbiological levels of pig carcasses, and evaluate if there is correlation between pathogens (Salmonella spp. and Listeria monocytogenes) and indicators (aerobic mesophilic counts, total coliforms, Escherichia coli and Enterobacteriaceae) microorganisms. A high Salmonella soroprevalence in pigs were founded before the slaughter (57.49 %). While the Salmonella prevalence in carcasses at the initial stage of the slaughter was 26.67 % and in the final stage 1.11 %, L. monocytogenes was detected only in the final washing and cooling steps, with a prevalence of 21.11 and 8.89 %, respectively. The aerobic mesophilic counts, Enterobacteriaceae, total coliforms and E. coli levels in initial steps of slaughter process were 4.25 ± 0.37; 1.25 ± 0.38; 1.10 ± 0.35 and 0.86 ± 0.36, respectively. At the end of slaughter process the results were lower (ranging from 0.16 at 2.70 log CFU/cm2). The step that most reduced microbiological levels was the scalding. The dehairing was a critical step that led to a significant increase of microorganisms levels in the process (p < 0.05). The evisceration not proved to be a critical step on the increase of microbial levels, differently of the final washing, which showed significant increases (p < 0.05) over the levels of aerobic counts, total coliforms, E. coli and enterobacterias (0.30; 0.36; 0.27 and 0.42 log respectively) and Salmonella spp. and L. monocytogenes. The chilling contributes significantly to the reduction of microbiological levels of carcasses, bringing them to levels below the all process stages, with the exception of scalding. No correlation between the hygiene indicator microorganisms used and presence of Salmonella spp. and L. monocytogenes were obtained (p < 0.05). The results show that steps in the process are critical to the sanitary profile, which implies the need to implement actions in the process to reducing the microbiological levels.
Resumo:
Some quality defects can cause changes in attributes of the meat, among these we can detach the PSE meat (Pale, Soft and Exudative). The PSE meat is pale, flaccid and exudative and result from sudden pH decrease while the carcass is still under high temperature. The identification of PSE meat has been done by measuring pH and L* (Lightness). However, studies suggest that a more precise evaluation of the kinetics of pH and temperature decrease has to be conducted to better understand the etiology of PSE meat in poultry. The aim of this study was to obtain the glycolytic curve for normal and PSE meat of chicken, through the pH, L* and CRA (water holding capacity) analysis. This experiment was conducted with carcasses obtained from a commercial slaughterhouse (n = 35) of Cobb lineage, 50 days old, from the same batch of creation and with the same pre-slaughter fasting time (10h). Samples of breast fillets were obtained from carcasses randomly collected immediately at the output of pre-cooling chiller, and the analysis of pH, temperature and L * were conducted in the same in times 1h35, 2h35, 3h35, 5h35, 8h35, 11h35, 14h35, 17h35, 20h35, 23h35 and 25h35 post mortem. The CRA analyzes were performed at the time of 25h35 post mortem. The pH measurements indicated that only from the 04 time (8h35 post mortem) was possible to verify an indicative of stabilization, being that PSE meat pH was 5,69±0,07, and normal meat was 5,93±0,09. The final pH (25h35 post mortem) was 5,98±0,06 and L* 57,30± 2,39 for normal meat, while for PSE meat the result was 5,72±0,06 and L* 59,44±1,51. To CRA, the average of the samples (67,19±3.13 and 64,45± 2.66) showed a difference between the normal chicken fillets and PSE respectively. The data found in this study are consistent with those reported by own research group in another slaughterhouse and contradicts similar works, but made at room temperature, indicating that for chickens under commercial conditions the resolution of rigor mortis occurs after 8h35 post mortem.