1 resultado para STOCHASTIC OPTIMAL CONTROL
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (13)
- Aston University Research Archive (23)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (11)
- Boston University Digital Common (3)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (13)
- CaltechTHESIS (17)
- Cambridge University Engineering Department Publications Database (110)
- CentAUR: Central Archive University of Reading - UK (71)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Cochin University of Science & Technology (CUSAT), India (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (8)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Helda - Digital Repository of University of Helsinki (5)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (178)
- Instituto Politécnico do Porto, Portugal (6)
- Massachusetts Institute of Technology (3)
- Nottingham eTheses (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (44)
- Queensland University of Technology - ePrints Archive (115)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional da Universidade de Aveiro - Portugal (9)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (103)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (7)
- University of Michigan (3)
- University of Queensland eSpace - Australia (15)
Resumo:
In this work we analyze an optimal control problem for a system of two hydroelectric power stations in cascade with reversible turbines. The objective is to optimize the profit of power production while respecting the system’s restrictions. Some of these restrictions translate into state constraints and the cost function is nonconvex. This increases the complexity of the optimal control problem. The problem is solved numerically and two different approaches are adopted. These approaches focus on global optimization techniques (Chen-Burer algorithm) and on a projection estimation refinement method (PERmethod). PERmethod is used as a technique to reduce the dimension of the problem. Results and execution time of the two procedures are compared.