4 resultados para Orthogonal polynomials on the real line

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an existence and localization result of unbounded solutions for a second-order differential equation on the half-line with functional boundary conditions. By applying unbounded upper and lower solutions, Green's functions and Schauder fixed point theorem, the existence of at least one solution is shown for the above problem. One example and one application to an Emden-Fowler equation are shown to illustrate our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an existence and localization result of unbounded solutions for a second-order differential equation on the half-line with functional boundary conditions. By applying unbounded upper and lower solutions, Green's functions and Schauder fixed point theorem, the existence of at least one solution is shown for the above problem. One example and one application to an Emden-Fowler equation are shown to illustrate our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the second order discontinuous equation in the real line, (a(t)φ(u′(t)))′ = f(t,u(t),u′(t)), a.e.t∈R, u(-∞) = ν⁻, u(+∞)=ν⁺, with φ an increasing homeomorphism such that φ(0)=0 and φ(R)=R, a∈C(R,R\{0})∩C¹(R,R) with a(t)>0, or a(t)<0, for t∈R, f:R³→R a L¹-Carathéodory function and ν⁻,ν⁺∈R such that ν⁻<ν⁺. We point out that the existence of heteroclinic solutions is obtained without asymptotic or growth assumptions on the nonlinearities φ and f. Moreover, as far as we know, this result is even new when φ(y)=y, that is, for equation (a(t)u′(t))′=f(t,u(t),u′(t)), a.e.t∈R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vulval pattern of six species of the genus Bursaphelenchus (B. abruptus, B. conicaudatus, B. fraudulentus, B. luxuriosae, B. mucronatus and B. xylophilus) was studied using scanning electron microscopy. A terminology for the vulval region structures observed is proposed herein and illustrated by micrographs and line drawings. It was shown that, of the studied species, only B. mucronatus and B. xylophilus share an identical morphology of the vulval region, all other species differing significantly from each other and from both B. mucronatus and B. xylophilus. This study indicates the diagnostic potential for variation in vulval morphology within Bursaphelenchus and it is recommended that such features are recorded in all future descriptions.