8 resultados para Orthogonal polynomials on the real line
em CaltechTHESIS
Resumo:
An experimental method combined with boundary layer theory is given for evaluating the added mass of a sphere moving along the axis of a circular cylinder filled with water or oil. The real fluid effects are separated from ideal fluid effects.
The experimental method consists essentially of a magnetic steel sphere propelled from rest by an electromagnetic coil in which the current is accurately controlled so that it only supplies force for a short time interval which is within the laminar flow regime of the fluid. The motion of the sphere as a function of time is recorded on single frame photographs using a short-arc multiple flash lamp with accurately controlled time intervals between flashes.
A concept of the effect of boundary layer displacement on the fluid flow around a sphere is introduced to evaluate the real fluid effects on the added mass. Surprisingly accurate agreement between experiment and theory is achieved.
Resumo:
Let F = Ǫ(ζ + ζ –1) be the maximal real subfield of the cyclotomic field Ǫ(ζ) where ζ is a primitive qth root of unity and q is an odd rational prime. The numbers u1=-1, uk=(ζk-ζ-k)/(ζ-ζ-1), k=2,…,p, p=(q-1)/2, are units in F and are called the cyclotomic units. In this thesis the sign distribution of the conjugates in F of the cyclotomic units is studied.
Let G(F/Ǫ) denote the Galoi's group of F over Ǫ, and let V denote the units in F. For each σϵ G(F/Ǫ) and μϵV define a mapping sgnσ: V→GF(2) by sgnσ(μ) = 1 iff σ(μ) ˂ 0 and sgnσ(μ) = 0 iff σ(μ) ˃ 0. Let {σ1, ... , σp} be a fixed ordering of G(F/Ǫ). The matrix Mq=(sgnσj(vi) ) , i, j = 1, ... , p is called the matrix of cyclotomic signatures. The rank of this matrix determines the sign distribution of the conjugates of the cyclotomic units. The matrix of cyclotomic signatures is associated with an ideal in the ring GF(2) [x] / (xp+ 1) in such a way that the rank of the matrix equals the GF(2)-dimension of the ideal. It is shown that if p = (q-1)/ 2 is a prime and if 2 is a primitive root mod p, then Mq is non-singular. Also let p be arbitrary, let ℓ be a primitive root mod q and let L = {i | 0 ≤ i ≤ p-1, the least positive residue of defined by ℓi mod q is greater than p}. Let Hq(x) ϵ GF(2)[x] be defined by Hq(x) = g. c. d. ((Σ xi/I ϵ L) (x+1) + 1, xp + 1). It is shown that the rank of Mq equals the difference p - degree Hq(x).
Further results are obtained by using the reciprocity theorem of class field theory. The reciprocity maps for a certain abelian extension of F and for the infinite primes in F are associated with the signs of conjugates. The product formula for the reciprocity maps is used to associate the signs of conjugates with the reciprocity maps at the primes which lie above (2). The case when (2) is a prime in F is studied in detail. Let T denote the group of totally positive units in F. Let U be the group generated by the cyclotomic units. Assume that (2) is a prime in F and that p is odd. Let F(2) denote the completion of F at (2) and let V(2) denote the units in F(2). The following statements are shown to be equivalent. 1) The matrix of cyclotomic signatures is non-singular. 2) U∩T = U2. 3) U∩F2(2) = U2. 4) V(2)/ V(2)2 = ˂v1 V(2)2˃ ʘ…ʘ˂vp V(2)2˃ ʘ ˂3V(2)2˃.
The rank of Mq was computed for 5≤q≤929 and the results appear in tables. On the basis of these results and additional calculations the following conjecture is made: If q and p = (q -1)/ 2 are both primes, then Mq is non-singular.
Resumo:
This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.
In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.
In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.
Resumo:
The influence of composition on the structure and on the electric and magnetic properties of amorphous Pd-Mn-P and Pd-Co-P prepared by rapid quenching techniques were investigated in terms of (1) the 3d band filling of the first transition metal group, (2) the phosphorus concentration effect which acts as an electron donor and (3) the transition metal concentration.
The structure is essentially characterized by a set of polyhedra subunits essentially inverse to the packing of hard spheres in real space. Examination of computer generated distribution functions using Monte Carlo random statistical distribution of these polyhedra entities demonstrated tile reproducibility of the experimentally calculated atomic distribution function. As a result, several possible "structural parameters" are proposed such as: the number of nearest neighbors, the metal-to-metal distance, the degree of short-range order and the affinity between metal-metal and metal-metalloid. It is shown that the degree of disorder increases from Ni to Mn. Similar behavior is observed with increase in the phosphorus concentration.
The magnetic properties of Pd-Co-P alloys show that they are ferromagnetic with a Curie temperature between 272 and 399°K as the cobalt concentration increases from 15 to 50 at.%. Below 20 at.% Co the short-range exchange interactions which produce the ferromagnetism are unable to establish a long-range magnetic order and a peak in the magnetization shows up at the lowest temperature range . The electric resistivity measurements were performed from liquid helium temperatures up to the vicinity of the melting point (900°K). The thermomagnetic analysis was carried out under an applied field of 6.0 kOe. The electrical resistivity of Pd-Co-P shows the coexistence of a Kondo-like minimum with ferromagnetism. The minimum becomes less important as the transition metal concentration increases and the coefficients of ℓn T and T^2 become smaller and strongly temperature dependent. The negative magnetoresistivity is a strong indication of the existence of localized moment.
The temperature coefficient of resistivity which is positive for Pd- Fe-P, Pd-Ni-P, and Pd-Co-P becomes negative for Pd-Mn-P. It is possible to account for the negative temperature dependence by the localized spin fluctuation model and the high density of states at the Fermi energy which becomes maximum between Mn and Cr. The magnetization curves for Pd-Mn-P are typical of those resulting from the interplay of different exchange forces. The established relationship between susceptibility and resistivity confirms the localized spin fluctuation model. The magnetoresistivity of Pd-Mn-P could be interpreted in tenns of a short-range magnetic ordering that could arise from the Rudennan-Kittel type interactions.
Resumo:
The structure of the set ϐ(A) of all eigenvalues of all complex matrices (elementwise) equimodular with a given n x n non-negative matrix A is studied. The problem was suggested by O. Taussky and some aspects have been studied by R. S. Varga and B.W. Levinger.
If every matrix equimodular with A is non-singular, then A is called regular. A new proof of the P. Camion-A.J. Hoffman characterization of regular matrices is given.
The set ϐ(A) consists of m ≤ n closed annuli centered at the origin. Each gap, ɤ, in this set can be associated with a class of regular matrices with a (unique) permutation, π(ɤ). The association depends on both the combinatorial structure of A and the size of the aii. Let A be associated with the set of r permutations, π1, π2,…, πr, where each gap in ϐ(A) is associated with one of the πk. Then r ≤ n, even when the complement of ϐ(A) has n+1 components. Further, if π(ɤ) is the identity, the real boundary points of ɤ are eigenvalues of real matrices equimodular with A. In particular, if A is essentially diagonally dominant, every real boundary point of ϐ(A) is an eigenvalues of a real matrix equimodular with A.
Several conjectures based on these results are made which if verified would constitute an extension of the Perron-Frobenius Theorem, and an algebraic method is introduced which unites the study of regular matrices with that of ϐ(A).
Resumo:
An investigation was conducted to estimate the error when the flat-flux approximation is used to compute the resonance integral for a single absorber element embedded in a neutron source.
The investigation was initiated by assuming a parabolic flux distribution in computing the flux-averaged escape probability which occurs in the collision density equation. Furthermore, also assumed were both wide resonance and narrow resonance expressions for the resonance integral. The fact that this simple model demonstrated a decrease in the resonance integral motivated the more detailed investigation of the thesis.
An integral equation describing the collision density as a function of energy, position and angle is constructed and is subsequently specialized to the case of energy and spatial dependence. This equation is further simplified by expanding the spatial dependence in a series of Legendre polynomials (since a one-dimensional case is considered). In this form, the effects of slowing-down and flux depression may be accounted for to any degree of accuracy desired. The resulting integral equation for the energy dependence is thus solved numerically, considering the slowing down model and the infinite mass model as separate cases.
From the solution obtained by the above method, the error ascribable to the flat-flux approximation is obtained. In addition to this, the error introduced in the resonance integral in assuming no slowing down in the absorber is deduced. Results by Chernick for bismuth rods, and by Corngold for uranium slabs, are compared to the latter case, and these agree to within the approximations made.
Resumo:
Part I
Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.
The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.
Part II
The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.
Part III
An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.
Resumo:
The matrices studied here are positive stable (or briefly stable). These are matrices, real or complex, whose eigenvalues have positive real parts. A theorem of Lyapunov states that A is stable if and only if there exists H ˃ 0 such that AH + HA* = I. Let A be a stable matrix. Three aspects of the Lyapunov transformation LA :H → AH + HA* are discussed.
1. Let C1 (A) = {AH + HA* :H ≥ 0} and C2 (A) = {H: AH+HA* ≥ 0}. The problems of determining the cones C1(A) and C2(A) are still unsolved. Using solvability theory for linear equations over cones it is proved that C1(A) is the polar of C2(A*), and it is also shown that C1 (A) = C1(A-1). The inertia assumed by matrices in C1(A) is characterized.
2. The index of dissipation of A was defined to be the maximum number of equal eigenvalues of H, where H runs through all matrices in the interior of C2(A). Upper and lower bounds, as well as some properties of this index, are given.
3. We consider the minimal eigenvalue of the Lyapunov transform AH+HA*, where H varies over the set of all positive semi-definite matrices whose largest eigenvalue is less than or equal to one. Denote it by ψ(A). It is proved that if A is Hermitian and has eigenvalues μ1 ≥ μ2…≥ μn ˃ 0, then ψ(A) = -(μ1-μn)2/(4(μ1 + μn)). The value of ψ(A) is also determined in case A is a normal, stable matrix. Then ψ(A) can be expressed in terms of at most three of the eigenvalues of A. If A is an arbitrary stable matrix, then upper and lower bounds for ψ(A) are obtained.