7 resultados para multivariate allometry
Resumo:
Clustering data streams is an important task in data mining research. Recently, some algorithms have been proposed to cluster data streams as a whole, but just few of them deal with multivariate data streams. Even so, these algorithms merely aggregate the attributes without touching upon the correlation among them. In order to overcome this issue, we propose a new framework to cluster multivariate data streams based on their evolving behavior over time, exploring the correlations among their attributes by computing the fractal dimension. Experimental results with climate data streams show that the clusters' quality and compactness can be improved compared to the competing method, leading to the thoughtfulness that attributes correlations cannot be put aside. In fact, the clusters' compactness are 7 to 25 times better using our method. Our framework also proves to be an useful tool to assist meteorologists in understanding the climate behavior along a period of time.
Resumo:
Mango (Mangifera indica L.) trees stand out among the main fruit trees cultivated in Brazil. The mango rosa fruit is a very popular local variety (landrace), especially because of their superior technological characteristics such as high contents of Vitamin C and soluble solids (SS), as well as attractive taste and color. The objective of this study was to select a breeding population of mango rosa (polyclonal variety; ≥5 individuals) that can simultaneously meet the fresh and processed fruit Vmarkets, using the multivariate method of principal components and the biplot graphic.
Resumo:
2016
Resumo:
2011
Resumo:
In a study of the vanadyl (VO2þ)-humic acids system, the residual vanadyl ion suppressed fluorescence and specific electron paramagnetic resonance (EPR) and NMR signals. In the case of NMR, the proton rotating frame relaxation times (T1qH) indicate that this suppression is due to an inefficient H-C cross polarization, which is a consequence of a shortening of T1qH. Principal components analysis (PCA) facilitated the isolation of the effect of the VO2þ ion and indicated that the organic free radical signal was due to at least two paramagnetic centres and that the VO2þ ion preferentially suppressed the species whose electronic density is delocalized over O atoms (greater g-factor). additionally, the newly obtained variables (principal components ? PC) indicated that, as the result of the more intense tillage a relative increase occurred in the accumulation of: (i) recalcitrant structures; (ii) lignin and long-chain alkyl structures; and (iii) organic free radicals with smaller g-factors.
Resumo:
2016
Resumo:
The GxE interaction only became widely discussed from evolutionary studies and evaluations of the causes of behavioral changes of species cultivated in environments. In the last 60 years, several methodologies for the study of adaptability and stability of genotypes in multiple environments trials were developed in order to assist the breeder's choice regarding which genotypes are more stable and which are the most suitable for the crops in the most diverse environments. The methods that use linear regression analysis were the first to be used in a general way by breeders, followed by multivariate analysis methods and mixed models. The need to identify the genetic and environmental causes that are behind the GxE interaction led to the development of new models that include the use of covariates and which can also include both multivariate methods and mixed modeling. However, further studies are needed to identify the causes of GxE interaction as well as for the more accurate measurement of its effects on phenotypic expression of varieties in competition trials carried out in genetic breeding programs.