4 resultados para Modelos log-linear
Resumo:
Resumo: Registros de sobrevivência do nascimento ao desmame de 3846 crias de ovinos da raça Santa Inês foram analisados por modelos de reprodutor linear e não linear (modelo de limiar), para estimar componentes de variância e herdabilidade. Os modelos usados para sobrevivência, analisada como característica da cria, incluíram os efeitos fixos de sexo, da combinação tipo de nascimento-criação da cria e da idade da ovelha ao parto, efeito da covariável peso da cria ao nascer e efeitos aleatórios de reprodutor, da classe rebanho-ano-estação e do resíduo. Componentes de variância para o modelo linear foram estimados pelo método da máxima verossimilhança restrita (REML) e para o modelo não linear por uma aproximação da máxima verossimilhança marginal (MML), pelo programa CMMAT2. O coeficiente de herdabilidade (h2) estimado pelo modelo de limiar foi de 0,29, e pelo modelo linear, 0,14. A correlação de ordem de Spearman entre as capacidades de transmissão dos reprodutores, com base nos dois modelos foi de 0,96. As estimativas de h2 obtidas indicam a possibilidade de se obter, por seleção, ganho genético para sobrevivência. [Linear and nonlinear models in genetic analyses of lamb survival in the Santa Inês hair sheep breed]. Abstract: Records of 3,846 lambs survival from birth to weaning of Santa Inês hair sheep breed, were analyzed by linear and non linear sire models (threshold model) to estimate variance components and heritability (h2). The models that were used to analyze survival, considered in this study as a lamb trait, included the fixed effects of sex of the lamb, combination of type of birth-rearing of lamb, and age of ewe, birth weight of lamb as covariate, and random effects of sire, herd-year-season and residual. Variance components were obtained using restricted maximum likelihood (REML), in linear model and marginal maximum likelihood in threshold model through CMMAT2 program. Estimate of heritability (h2) obtained by threshold model was 0.29 and by linear model was 0.14. Rank correlation of Spearman, between sire solutions based on the two models was 0.96. The obtained estimates in this study indicate that it is possible to acquire genetic gain to survival by selection.
Resumo:
O gerenciamento de riscos climáticos requer informação sobre estados futuros de variáveis climáticas, geralmente representada por funções de distribuição de probabilidade acumulada (FDPA, P(Y?y) ou por sua funções complementares (P(Y>y)), ditas funções probabilidade de exceder (FPE). Uma variedade de métodos estatísticos tem sido utilizada para estimação de FPE, incluindo, modelos de regressão linear múltipla, regressão logística e métodos não paramétricos (MAIA et al, 2007; LO et al, 2008). Apesar de parecer intuitivo que a incerteza associada às estimativas das FPE é fundamental para os tomadores de decisão, esse tipo de informação raramente é fornecido. Modelos estatísticos de previsão baseados em séries históricas da variável de interesse (chuva, temperatura) e de preditores derivados de estados do oceano e da atmosfera (índices climáticos tais como: temperaturas da superfície do mar ? TSM, índice de oscilação sul, IOS, El Nino/Oscilação Sul - ENSO) se constituem em alternativas promissoras para auxílio às tomada de decisão, em escalas locais e regionais. O uso de tais indicadores permite incorporar mudanças de padrão derivadas de mudanças climáticas em modelos estatísticos que utilizam informação histórica. Neste trabalho, mostramos como o Modelo de Regressão de Cox (MRC; COX, 1972), tradicionalmente utilizado para modelagem de tempos de falha, em investigações na área médica e em ciências sociais, pode ser de grande utilidade para avaliação probabilística de riscos climáticos, mesmo para variáveis que não representam tempos de falha tais como chuva, produtividade de culturas, lucros, entre outras. O MRC pode ser utilizado para avaliar a influência de preditores (índices climáticos) sobre riscos de interesse (representados pelas FPE), estimar FPE para combinações específicas de preditores e incertezas associadas além de fornecer informação sobre riscos relativos, de grande valor para tomadores de decisão. Apresentamos dois estudos de caso nos quais o Modelo de Cox foi usado para investigar: a) o efeito do IOS e de um índice derivado de TSM do Pacífico sobre o início da estação chuvosa em Cairns (Austrália) e b) a influência o índice Nino 3.4, derivado de estados da TSM no Pacífico Equatorial sobre o chuva acumulada no período de Março a Junho em Limoeiro do Norte (Ceará, Brasil). O objetivo da apresentação desses estudos é meramente didático, para demonstrar o potencial do método proposto como ferramenta de auxílio à tomada de decisão.
Resumo:
Objetivou-se, neste trabalho, avaliar os ganhos genéticos preditos por meio de diferentes índices de seleção pela metodologia REML/BLUP, em cinco caracteres de interesse ao programa de melhoramento do café conilon do Incaper. Foram avaliadas 8 progênies de meios-irmãos, de ciclo de maturação precoce, média de duas safras, com três repetições, o que totalizou 1368 observações, utilizados os índices de seleção clássico, multiplicativo e com base na soma de postos. Avaliaramse, na época de colheita, as características tamanho dos grãos (TG), produtividade (PRO), porte (PT), vigor vegetativo (VIG) e grau de inclinação (GI). A população foi avaliada na Fazenda Experimental de Marilândia, região Noroeste do estado do Espírito Santo. As análises genético-estatísticas foram realizadas pelo programa Selegen - REM/BLUP. Verificou-se, a partir da análise dos parâmetros genéticos, um excelente potencial seletivo entre famílias, para todas as características avaliadas. O índice Mulamba e Mock foi o que mostrou maior eficiência de seleção entre famílias de meios-irmãos de café conilon.
Resumo:
O atual nível das mudanças uso do solo causa impactos nas mudanças ambientais globais. Os processos de mudanças do uso e cobertura do solo são processos complexos e não acontecem ao acaso sobre uma região. Geralmente estas mudanças são determinadas localmente, regionalmente ou globalmente por fatores geográficos, ambientais, sociais, econômicos e políticos interagindo em diversas escalas temporais e espaciais. Parte desta complexidade é capturada por modelos de simulação de mudanças do uso e cobertura do solo. Uma etapa do processo de simulação do modelo CLUE-S é a quantificação da influência local dos impulsores de mudança sobre a probabilidade de ocorrência de uma classe de uso do solo. Esta influência local é obtida ajustando um modelo de regressão logística. Um modelo de regressão espacial é proposto como alternativa para selecionar os impulsores de mudanças. Este modelo incorpora a informação da vizinhança espacial existente nos dados que não é considerada na regressão logística. Baseado em um cenário de tendência linear para a demanda agregada do uso do solo, simulações da mudança do uso do solo para a microbacia do Coxim, Mato Grosso do Sul, foram geradas, comparadas e analisadas usando o modelo CLUE-S sob os enfoques da regressão logística e espacial para o período de 2001 a 2011. Ambos os enfoques apresentaram simulações com muito boa concordância, medidas de acurácia global e Kappa altos, com o uso do solo para o ano de referência de 2004. A diferença entre os enfoques foi observada na distribuição espacial da simulação do uso do solo para o ano 2011, sendo o enfoque da regressão espacial que teve a simulação com menor discrepância com a demanda do uso do solo para esse ano.