4 resultados para Modelos lineares (Estatística)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Apresentamos uma versão inicial da solução em desenvolvimento para estimação dos efeitos desejados através do modelo animal univariado, utilizando duas abordagens distintas para a obtenção do melhor estimador linear não viesado (BLUP) dos parâmetros do modelo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O atual nível das mudanças uso do solo causa impactos nas mudanças ambientais globais. Os processos de mudanças do uso e cobertura do solo são processos complexos e não acontecem ao acaso sobre uma região. Geralmente estas mudanças são determinadas localmente, regionalmente ou globalmente por fatores geográficos, ambientais, sociais, econômicos e políticos interagindo em diversas escalas temporais e espaciais. Parte desta complexidade é capturada por modelos de simulação de mudanças do uso e cobertura do solo. Uma etapa do processo de simulação do modelo CLUE-S é a quantificação da influência local dos impulsores de mudança sobre a probabilidade de ocorrência de uma classe de uso do solo. Esta influência local é obtida ajustando um modelo de regressão logística. Um modelo de regressão espacial é proposto como alternativa para selecionar os impulsores de mudanças. Este modelo incorpora a informação da vizinhança espacial existente nos dados que não é considerada na regressão logística. Baseado em um cenário de tendência linear para a demanda agregada do uso do solo, simulações da mudança do uso do solo para a microbacia do Coxim, Mato Grosso do Sul, foram geradas, comparadas e analisadas usando o modelo CLUE-S sob os enfoques da regressão logística e espacial para o período de 2001 a 2011. Ambos os enfoques apresentaram simulações com muito boa concordância, medidas de acurácia global e Kappa altos, com o uso do solo para o ano de referência de 2004. A diferença entre os enfoques foi observada na distribuição espacial da simulação do uso do solo para o ano 2011, sendo o enfoque da regressão espacial que teve a simulação com menor discrepância com a demanda do uso do solo para esse ano.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O Nordeste é a região brasileira mais vulnerável ao aquecimento global. Os modelos climáticos globais são a melhor ferramenta para projetar cenários prováveis de alterações climáticas para o futuro, apesar da incerteza envolvida. O objetivo deste trabalho foi realizada uma avaliação da tendência da temperatura média nos cenários futuros previstos pelos modelos climáticos globais do IPCC para região Nordeste do Brasil. Foi realizada uma análise estatística básica dos dados de comparação entre os modelos. Foi possível agrupar os modelos em 5 grupos, desde modelos estimando temperaturas médias comparativamente inferiores em todos os meses a outros com valores superiores em todos os meses.