2 resultados para Mixed integer models
Resumo:
Agroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems using airborne lidar data. Focusing on an agroforestry system in the Brazilian Amazon, this study first predicted plot-level AGB using fixed-effects regression models that assumed the regression coefficients to be constants. The model prediction errors were then analyzed from the perspectives of tree DBH (diameter at breast height)?height relationships and plot-level wood density, which suggested the need for stratifying agroforestry fields to improve plot-level AGB modeling. We separated teak plantations from other agroforestry types and predicted AGB using mixed-effects models that can incorporate the variation of AGB-height relationship across agroforestry types. We found that, at the plot scale, mixed-effects models led to better model prediction performance (based on leave-one-out cross-validation) than the fixed-effects models, with the coefficient of determination (R2) increasing from 0.38 to 0.64. At the landscape level, the difference between AGB densities from the two types of models was ~10% on average and up to ~30% at the pixel level. This study suggested the importance of stratification based on tree AGB allometry and the utility of mixed-effects models in modeling and mapping AGB of agroforestry systems.
Resumo:
Objetivou-se, neste trabalho, avaliar os ganhos genéticos preditos por meio de diferentes índices de seleção pela metodologia REML/BLUP, em cinco caracteres de interesse ao programa de melhoramento do café conilon do Incaper. Foram avaliadas 8 progênies de meios-irmãos, de ciclo de maturação precoce, média de duas safras, com três repetições, o que totalizou 1368 observações, utilizados os índices de seleção clássico, multiplicativo e com base na soma de postos. Avaliaramse, na época de colheita, as características tamanho dos grãos (TG), produtividade (PRO), porte (PT), vigor vegetativo (VIG) e grau de inclinação (GI). A população foi avaliada na Fazenda Experimental de Marilândia, região Noroeste do estado do Espírito Santo. As análises genético-estatísticas foram realizadas pelo programa Selegen - REM/BLUP. Verificou-se, a partir da análise dos parâmetros genéticos, um excelente potencial seletivo entre famílias, para todas as características avaliadas. O índice Mulamba e Mock foi o que mostrou maior eficiência de seleção entre famílias de meios-irmãos de café conilon.