9 resultados para Predição sem exercício
em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)
Resumo:
2009
Resumo:
Objetivou-se, neste trabalho, avaliar os ganhos genéticos preditos por meio de diferentes índices de seleção pela metodologia REML/BLUP, em cinco caracteres de interesse ao programa de melhoramento do café conilon do Incaper. Foram avaliadas 8 progênies de meios-irmãos, de ciclo de maturação precoce, média de duas safras, com três repetições, o que totalizou 1368 observações, utilizados os índices de seleção clássico, multiplicativo e com base na soma de postos. Avaliaramse, na época de colheita, as características tamanho dos grãos (TG), produtividade (PRO), porte (PT), vigor vegetativo (VIG) e grau de inclinação (GI). A população foi avaliada na Fazenda Experimental de Marilândia, região Noroeste do estado do Espírito Santo. As análises genético-estatísticas foram realizadas pelo programa Selegen - REM/BLUP. Verificou-se, a partir da análise dos parâmetros genéticos, um excelente potencial seletivo entre famílias, para todas as características avaliadas. O índice Mulamba e Mock foi o que mostrou maior eficiência de seleção entre famílias de meios-irmãos de café conilon.
Resumo:
O uso de tecnologias no setor florestal tem permitido dentre outras possibilidades, conhecer a real condição da floresta desempenhando o menor trabalho possível, o que garante uma maior eficiência ao se tratar, por exemplo, em tipos de amostragem no inventário florestal. A pesquisa teve como objetivo testar a eficiência da amostragem aleatória e sistemática em quatro níveis de intensidade amostral para produzir estimativas de biomassa seca acima do solo e comparar mapas de predição de biomassa com dados gerados pelo LIDAR (Light Detection and Ranging). O trabalho foi realizado em uma reserva florestal de 800 ha do Campo Experimental da Embrapa Acre. Os dados foram fornecidos pela Embrapa Acre e gerados em duas fases, a primeira por meio de um inventário 100%, no qual foi utilizado para simular a amostragem na área de estudo, sendo utilizado todas as árvores vivas com DAP > 30 cm, a segunda fase através de dados LIDAR, ou seja, utilizando o perfilhamento à Laser aerotransportado. Para simular a amostragem foram utilizados três tamanhos de parcelas distintos 20mx20m, 50mx50m e 100mx100m em diferentes intensidades amostrais que foram 0,5%, 1%, 5% e 10%. O parâmetro utilizado para comparação foi o da biomassa seca acima do solo em Mg.ha-1 pelo teste Tukey, a 95% de probabilidade através do programa Minitab17 e as parcelas foram sorteadas e distribuídas por meio de simulações de instalação de parcelas utilizando o Arc GIS 10. Os dados LIDAR foram amostrados por uma empresa contratada, a partir deles foram realizados todos os modelos e a extrapolação das métricas para toda a área através do comando gridmetrics. Os mapas de predição foram confeccionados pela ferramenta de interpolação vizinhos próximos do Arc GIS 10 e as comparações entre os mapas foram feitas pela ferramenta do Arc GIS 10, Zonal statistic. A biomassa média obtida do inventário florestal foi de 155,2 Mg.ha-1, sendo que o tamanho de parcela ótimo encontrado foi de 50mx50m e os tratamentos que mais se aproximaram da média do inventário florestal foram o aleatório com intensidade amostral de 5% e o sistemático com intensidade amostral de 10%. Os tratamentos que atenderam o erro aceitável de 10% foram à amostragem aleatória com intensidades amostrais de 5% e 10% e a amostragem sistemática com intensidade amostral de 10%. Não houve diferença estatística significativa entre os tratamentos. Os mapas de vegetação baseados na biomassa que melhor representaram a biomassa seca acima do solo no tamanho de parcela 50mx50m foram na amostragem aleatória com intensidade amostral de 10%, e na amostragem sistemática com intensidades amostrais de 5% e 10%, comparando com os mapas gerados a partir do inventário 100% e dos dados LIDAR. Pode-se concluir que o tamanho ótimo de parcela foi de 50mx50m, com intensidades amostrais acima de 5% não havendo diferença entre os métodos de amostragem e que os mapas gerados pelo inventário 100% e pelos dados LIDAR foram equivalentes.
Resumo:
2015
Resumo:
2016
Resumo:
2016
Resumo:
2016
Resumo:
O objetivo deste trabalho foi predizer a fertilidade do solo no polo agrícola do Estado do Rio de Janeiro, por meio da modelagem solo x paisagem. A área de estudo compreendeu as regiões mais produtivas do Estado do Rio de Janeiro: Norte, Noroeste e Serrana. Características químicas do solo ? pH em H2O e capacidade de troca catiônica (CTC) ? e ambientais ? elevação, plano de curvatura, perfil de curvatura, índice de umidade, aspecto e declividade do terreno, além de tipos de solos, índice de vegetação normalizada (NDVI), imagens Landsat 7 e litologia ? foram utilizadas como variáveis preditoras. A análise exploratória dos dados identificou valores extremos, os quais foram expurgados, na preparação para a análise por regressão linear múltipla (RLM). Aos resultados da RLM, foram adicionados os resultados de krigagem dos resíduos da regressão, com uma técnica de mapeamento digital de solos (MDS) denominada regressão-krigagem. Na região Serrana, as variáveis ambientais explicaram as variáveis químicas. A variável NDVI foi importante nas três regiões, o que evidencia a importância da cobertura vegetal para a predição da fertilidade do solo. Em geral, os solos analisados apresentaram baixo pH. Os valores de CTC, nas regiões estudadas, estão dentro do intervalo considerado bom para a fertilidade do solo.
Resumo:
2016