5 resultados para Genomic Selection

em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genomic selection (GS) has recently been proposed as a new selection strategy which represents an innovative paradigm in crop improvement, now widely adopted in animal breeding. Genomic selection relies on phenotyping and high-density genotyping of a sufficiently large and representative sample of the target breeding population, so that the majority of loci that regulate a quantitative trait are in linkage disequilibrium with one or more molecular markers and can thus be captured by selection. In this study we address genomic selection in a practical fruit breeding context applying it to a breeding population of table grape obtained from a cross between the hybrid genotype D8909-15 (Vitis rupestris × Vitis arizonica/girdiana), which is resistant to dagger nematode and Pierce?s disease (PD), and ?B90-116?, a susceptible Vitis vinifera cultivar with desirable fruit characteristics. Our aim was to enhance the knowledge on the genomic variation of agronomical traits in table grape populations for future use in marker-assisted selection (MAS) and GS, by discovering a set of molecular markers associated with genomic regions involved in this variation. A number of Quantitative Trait Loci (QTL) were discovered but this method is inaccurate and the genetic architecture of the studied population was better captured by the BLasso method of genomic selection, which allowed for efficient inference about the genetic contribution of the various marker loci. The technology of genomic selection afforded greater efficiency than QTL analysis and can be very useful in speeding up the selection procedures for agronomic traits in table grapes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genomic selection (GS) has been used to compute genomic estimated breeding values (GEBV) of individuals; however, it has only been applied to animal and major plant crops due to high costs. Besides, breeding and selection is performed at the family level in some crops. We aimed to study the implementation of genome-wide family selection (GWFS) in two loblolly pine (Pinus taeda L.) populations: i) the breeding population CCLONES composed of 63 families (5-20 individuals per family), phenotyped for four traits (stem diameter, stem rust susceptibility, tree stiffness and lignin content) and genotyped using an Illumina Infinium assay with 4740 polymorphic SNPs, and ii) a simulated population that reproduced the same pedigree as CCLONES, 5000 polymorphic loci and two traits (oligogenic and polygenic). In both populations, phenotypic and genotypic data was pooled at the family level in silico. Phenotypes were averaged across replicates for all the individuals and allele frequency was computed for each SNP. Marker effects were estimated at the individual (GEBV) and family (GEFV) levels with Bayes-B using the package BGLR in R and models were validated using 10-fold cross validations. Predicted ability, computed by correlating phenotypes with GEBV and GEFV, was always higher for GEFV in both populations, even after standardizing GEFV predictions to be comparable to GEBV. Results revealed great potential for using GWFS in breeding programs that select families, such as most outbreeding forage species. A significant drop in genotyping costs as one sample per family is needed would allow the application of GWFS in minor crops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to propose and evaluate the use of factor analysis (FA) in obtaining latent variables (factors) that represent a set of pig traits simultaneously, for use in genome-wide selection (GWS) studies. We used crosses between outbred F2 populations of Brazilian Piau X commercial pigs. Data were obtained on 345 F2 pigs, genotyped for 237 SNPs, with 41 traits. FA allowed us to obtain four biologically interpretable factors: ?weight?, ?fat?, ?loin?, and ?performance?. These factors were used as dependent variables in multiple regression models of genomic selection (Bayes A, Bayes B, RR-BLUP, and Bayesian LASSO). The use of FA is presented as an interesting alternative to select individuals for multiple variables simultaneously in GWS studies; accuracy measurements of the factors were similar to those obtained when the original traits were considered individually. The similarities between the top 10% of individuals selected by the factor, and those selected by the individual traits, were also satisfactory. Moreover, the estimated markers effects for the traits were similar to those found for the relevant factor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Feed efficiency and carcass characteristics are late-measured traits. The detection of molecular markers associated with them can help breeding programs to select animals early in life, and to predict breeding values with high accuracy. The objective of this study was to identify polymorphisms in the functional and positional candidate gene NEUROD1 (neurogenic differentiation 1), and investigate their associations with production traits in reference families of Nelore cattle. A total of 585 steers were used, from 34 sires chosen to represent the variability of this breed. By sequencing 14 animals with extreme residual feed intake (RFI) values, seven single nucleotide polymorphisms (SNPs) in NEUROD1 were identified. The investigation of marker effects on the target traits RFI, backfat thickness (BFT), ribeye area (REA), average body weight (ABW), and metabolic body weight (MBW) was performed with a mixed model using the restricted maximum likelihood method. SNP1062, which changes cytosine for guanine, had no significant association with RFI or REA. However, we found an additive effect on ABW (P ≤ 0.05) and MBW (P ≤ 0.05), with an estimated allele substitution effect of -1.59 and -0.93 kg0.75, respectively. A dominant effect of this SNP for BFT was also found (P ≤ 0.010). Our results are the first that identify NEUROD1 as a candidate that affects BFT, ABW, and MBW. Once confirmed, the inclusion of this SNP in dense panels may improve the accuracy of genomic selection for these traits in Nelore beef cattle as this SNP is not currently represented on SNP chips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nelore is the major beef cattle breed in Brazil with more than 130 million heads. Genome-wide association studies (GWAS) are often used to associate markers and genomic regions to growth and meat quality traits that can be used to assist selection programs. An alternative methodology to traditional GWAS that involves the construction of gene network interactions, derived from results of several GWAS is the AWM (Association Weight Matrices)/PCIT (Partial Correlation and Information Theory). With the aim of evaluating the genetic architecture of Brazilian Nelore cattle, we used high-density SNP genotyping data (~770,000 SNP) from 780 Nelore animals comprising 34 half-sibling families derived from highly disseminated and unrelated sires from across Brazil. The AWM/PCIT methodology was employed to evaluate the genes that participate in a series of eight phenotypes related to growth and meat quality obtained from this Nelore sample.