1 resultado para Rosa Maria

em Biblioteca de Teses e Dissertações da USP


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho será demonstrada uma versão dos teoremas de Hilbert Liebmann para superfícies em S² x R e H² x R, que são teoremas de existência e unicidade de superfícies completas com curvatura Gaussiana constante nesses ambientes. Como parte da demonstração, a saber a existência, será apresentada uma classificação das superfícies de revolução completas com curvatura Gaussiana constante em torno de um eixo qualquer, em S² x R e em torno de um eixo lorentziano, em H² x R.