3 resultados para Estimação robusta
em Biblioteca de Teses e Dissertações da USP
Resumo:
Este trabalho apresenta uma análise de algoritmos computacionais aplicados à estimação de fasores elétricos em SEPs. A medição dos fasores é realizada por meio da alocação de Unidades de Medição Fasorial nestes sistemas e encontra diversas aplicações nas áreas de operação, controle, proteção e planejamento. Para que os fasores possam ser aplicados, são definidos padrões de medição, sincronização e comunicação, por meio da norma IEEE C37.118.1. A norma apresenta os padrões de mensagens, timetag, fasores, sistema de sincronização, e define testes para avaliar a estimação. Apesar de abranger todos esses critérios, a diretriz não define um algoritmo de estimação padrão, abrindo espaço para uso de diversos métodos, desde que a precisão seja atendida. Nesse contexto, o presente trabalho analisa alguns algoritmos de estimação de fasores definidos na literatura, avaliando o comportamento deles em determinados casos. Foram considerados, dessa forma, os métodos: Transformada Discreta de Fourier, Método dos Mínimos Quadrados e Transformada Wavelet Discreta, nas versões recursivas e não-recursivas. Esses métodos foram submetidos a sinais sintéticos, a fim de verificar o comportamento diante dos testes propostos pela norma, avaliando o Total Vector Error, tempo de resposta e atraso e overshoot. Os algoritmos também foram embarcados em um hardware, denominado PC104, e avaliados de acordo com os sinais medidos pelo equipamento na saída analógica de um simulador em tempo real (Real Time Digital Simulator).
Resumo:
Nas últimas décadas, a poluição sonora tornou-se um grande problema para a sociedade. É por esta razão que a indústria tem aumentado seus esforços para reduzir a emissão de ruído. Para fazer isso, é importante localizar quais partes das fontes sonoras são as que emitem maior energia acústica. Conhecer os pontos de emissão é necessário para ter o controle das mesmas e assim poder reduzir o impacto acústico-ambiental. Técnicas como \"beamforming\" e \"Near-Field Acoustic Holography\" (NAH) permitem a obtenção de imagens acústicas. Essas imagens são obtidas usando um arranjo de microfones localizado a uma distância relativa de uma fonte emissora de ruído. Uma vez adquiridos os dados experimentais pode-se obter a localização e magnitude dos principais pontos de emissão de ruído. Do mesmo modo, ajudam a localizar fontes aeroacústicas e vibro acústicas porque são ferramentas de propósito geral. Usualmente, estes tipos de fontes trabalham em diferentes faixas de frequência de emissão. Recentemente, foi desenvolvida a transformada de Kronecker para arranjos de microfones, a qual fornece uma redução significativa do custo computacional quando aplicada a diversos métodos de reconstrução de imagens, desde que os microfones estejam distribuídos em um arranjo separável. Este trabalho de mestrado propõe realizar medições com sinais reais, usando diversos algoritmos desenvolvidos anteriormente em uma tese de doutorado, quanto à qualidade do resultado obtido e à complexidade computacional, e o desenvolvimento de alternativas para tratamento de dados quando alguns microfones do arranjo apresentarem defeito. Para reduzir o impacto de falhas em microfones e manter a condição de que o arranjo seja separável, foi desenvolvida uma alternativa para utilizar os algoritmos rápidos, eliminando-se apenas os microfones com defeito, de maneira que os resultados finais serão obtidos levando-se em conta todos os microfones do arranjo.
Resumo:
Neste trabalho propomos o uso de um método Bayesiano para estimar o parâmetro de memória de um processo estocástico com memória longa quando sua função de verossimilhança é intratável ou não está disponível. Esta abordagem fornece uma aproximação para a distribuição a posteriori sobre a memória e outros parâmetros e é baseada numa aplicação simples do método conhecido como computação Bayesiana aproximada (ABC). Alguns estimadores populares para o parâmetro de memória serão revisados e comparados com esta abordagem. O emprego de nossa proposta viabiliza a solução de problemas complexos sob o ponto de vista Bayesiano e, embora aproximativa, possui um desempenho muito satisfatório quando comparada com métodos clássicos.