169 resultados para Antibodies


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) that is activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. Cleavage of this receptor exposes a neoepitope, termed the tethered ligand (TL), which binds intramolecularly within the receptor to stimulate signal transduction via coupled G proteins. PAR2-mediated signal transduction is also experimentally stimulated by hexapeptides (agonist peptides; APs) that are homologous to the TL sequence. Due to the irreversible nature of PAR2 proteolysis, downstream signal transduction is tightly regulated. Following activation, PAR2 is rapidly uncoupled from downstream signalling by the post-translational modifications phosphorylation and ubiquination which facilitate interactions with â- arrestin. This scaffolding protein couples PAR2 to the internalisation machinery initiating its desensitisation and trafficking through the early and late endosomes followed by receptor degradation. PAR2 is widely expressed in mammalian tissues with key roles for this receptor in cardiovascular, respiratory, nervous and musculoskeletal systems. This receptor has also been linked to pathological states with aberrant expression and signalling noted in several cancers. In prostate cancer, PAR2 signalling induces migration and proliferation of tumour derived cell lines, while elevated receptor expression has been noted in malignant tissues. Importantly, a role for this receptor has also been suggested in prostate cancer bone metastasis as coexpression of PAR2 and a proteolytic activator has been demonstrated by immunohistochemical analysis. Based on these data, the primary focus of this project has been on two aspects of PAR2 biology. The first is characterisation of cellular mechanisms that regulate PAR2 signalling and trafficking. The second aspect is the role of this receptor in prostate cancer bone metastasis. In addition, to permit these studies, it was first necessary to evaluate the specificity of the commercially available anti-PAR2 antibodies SAM11, C17, N19 and H99. The evaluation of the four commercially available antibodies was assessed using four techniques: immunoprecipitation; Western blot analysis; immunofluorescence; and flow cytometry. These approaches demonstrated that three of the antibodies efficiently detect ectopically expressed PAR2 by each of these techniques. A significant finding from this study was that N19 was the only antibody able to specifically detect N-glycosylated endogenous PAR2 by Western blot analysis. This analysis was performed on lysates from prostate cancer derived cell lines and tissue derived from wildtype and PAR2 knockout mice. Importantly, further evaluation demonstrated that this antibody also efficiently detects endogenous PAR2 at the cell surface by flow cytometry. The anti-PAR2 antibody N19 was used to explore the in vitro role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Significantly, use of the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling experiments using two approaches which showed that PAR2 stably expressed by CHO cells is palmitoylated and that palmitoylation occurs on cysteine 361. Another key finding from this study is that palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ~9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. Importantly, this study also identified that palmitoylation of this receptor within the Golgi apparatus is required for efficient agonist-induced rab11amediated trafficking of PAR2 to the cell surface. Interestingly, palmitoylation is also required for receptor desensitization, as agonist-induced â-arrestin recruitment and receptor degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. Collectively, these data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor. This project also evaluated PAR2 residues involved in ligand docking. Although the extracellular loop (ECL)2 of PAR2 is known to be required for agonist-induced signal transduction, the binding pocket for receptor agonists remains to be determined. In silico homology modelling, based on a crystal structure for the prototypical GPCR rhodopsin, and ligand docking were performed to identify PAR2 transmembrane (TM) amino acids potentially involved in agonist binding. These methods identified 12 candidate residues that were mutated to examine the binding site of the PAR2 TL, revealed by trypsin cleavage, as well as of the soluble ligands 2f-LIGRLO-NH2 and GB110, which are both structurally based on the AP SLIGRLNH2. Ligand binding was evaluated from the impact of the mutated residues on PAR2-mediated calcium mobilisation. An important finding from these experiments was that mutation of residues Y156 and Y326 significantly reduced 2f-LIGRLO-NH2 and GB110 agonist activity. L307 was also important for GB110 activity. Intriguingly, mutation of PAR2 residues did not alter trypsin-induced signalling to the same extent as for the soluble agonists. The reason for this difference remains to be further examined by in silico and in vitro experimentation and, potentially, crystal structure studies. However, these findings identified the importance of TM domains in PAR2 ligand docking and will enhance the design of both PAR2 agonists and potentially agents to inhibit signalling (antagonists). The potential importance of PAR2 in prostate cancer bone metastasis was examined using a mouse model. In patients, prostate cancer bone metastases cause bone growth by disrupting bone homeostasis. In an attempt to mimic prostate cancer growth in bone, PAR2 responsive 22Rv1 prostate cancer cells, which form mixed osteoblastic and osteolytic lesions, were injected into the proximal aspect of mouse tibiae. A role for PAR2 was assessed by treating these mice with the recently developed PAR2 antagonist GB88. As controls, animals bearing intra-tibial tumours were also treated with vehicle (olive oil) or the prostate cancer chemotherapeutic docetaxel. The effect of these treatments on bone was examined radiographically and by micro-CT. Consistent with previous studies, 22Rv1 tumours caused osteoblastic periosteal spicule formation and concurrent osteolytic bone loss. Significantly, blockade of PAR2 signalling reduced the osteoblastic and osteolytic phenotype of 22Rv1 tumours in bone. No bone defects were detected in mice treated with docetaxel. These qualitative data will be followed in the future by quantitative micro-CT analysis as well as histology and histomorphometry analysis of already collected tissues. Nonetheless, these preliminary experiments highlight a potential role for PAR2 in prostate cancer growth in bone. In summary, in vitro studies have defined mechanisms regulating PAR2 activation, downstream signalling and trafficking and in vivo studies point to a potential role for this receptor in prostate cancer bone metastasis. The outcomes of this project are that a greater understanding of the biology of PAR2 may lead to the development of strategies to modulate the function of this receptor in disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An introduction to biologics 23.1 Introduction: Principles of biologics and their use as medicines 23.2 Protein biologics used as drugs 23.2.1 Proteins that function through enzymatic or regulatory activity. 23.2.1.1 Biologics as replacement of a deficient or abnormal protein. 23.2.1.2 Proteins that augment an existing biological process. 23.2.1.3 Proteins that provide a novel function or activity. 23.2.2. Proteins that function through specific targeting activity. 23.2.2.1. Monoclonal antibody nomenclature. 23.2.2.2. Naked monoclonal antibodies. 23.2.2.3. Conjugated monoclonal antibodies. 23.2.3. Recombinant protein vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An introduction to anticancer drugs 24.1 Introduction 24.2 The rationale behind anticancer drug therapy 24.3 Drugs used in cancer 24.3.1 Alkylating agents 24.3.2 Cytotoxic antibiotics 24.3.3 Antimetabolites 24.3.4 Microtubule inhibitors 24.3.5 Monoclonal antibodies 24.3.6 Steroid hormones and their antagonists 24.3.7 Other treatments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIV remains a significant global burden and without an effective vaccine, it is crucial to develop microbicides to halt the initial transmission of the virus. Several microbicides have been researched with various levels of success. Amongst these, the broadly neutralising antibodies and peptide lectins are promising in that they can immediately act on the virus and have proven efficacious in in vitro and in vivo protection studies. For the purpose of development and access by the relevant population groups, it is crucial that these microbicides be produced at low cost. For the promising protein and peptide candidate molecules, it appears that current production systems are overburdened and expensive to establish and maintain. With recent developments in vector systems for protein expression coupled with downstream protein purification technologies, plants are rapidly gaining credibility as alternative production systems. Here we evaluate the advances made in host and vector system development for plant expression as well as the progress made in expressing HIV neutralising antibodies and peptide lectins using plant-based platforms. © 2012 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virus-like particle-based vaccines for high-risk human papillomaviruses (HPVs) appear to have great promise; however, cell culture-derived vaccines will probably be very expensive. The optimization of expression of different codon-optimized versions of the HPV-16 L1 capsid protein gene in plants has been explored by means of transient expression from a novel suite of Agrobacterium tumefaciens binary expression vectors, which allow targeting of recombinant protein to the cytoplasm, endoplasmic reticulum (ER) or chloroplasts. A gene resynthesized to reflect human codon usage expresses better than the native gene, which expresses better than a plant-optimized gene. Moreover, chloroplast localization allows significantly higher levels of accumulation of L1 protein than does cytoplasmic localization, whilst ER retention was least successful. High levels of L1 (>17% total soluble protein) could be produced via transient expression: the protein assembled into higher-order structures visible by electron microscopy, and a concentrated extract was highly immunogenic in mice after subcutaneous injection and elicited high-titre neutralizing antibodies. Transgenic tobacco plants expressing a human codon-optimized gene linked to a chloroplast-targeting signal expressed L1 at levels up to 11% of the total soluble protein. These are the highest levels of HPV L1 expression reported for plants: these results, and the excellent immunogenicity of the product, significantly improve the prospects of making a conventional HPV vaccine by this means. © 2007 SGM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The native cottontail rabbit papillomavirus (CRPV) L1 capsid protein gene was expressed transgenically via Agrobacterium tumefaciens transformation and transiently via a tobacco mosaic virus (TMV) vector in Nicotiana spp. L1 protein was detected in concentrated plant extracts at concentrations up to 1.0 mg/kg in transgenic plants and up to 0.4 mg/kg in TMV-infected plants. The protein did not detectably assemble into viruslike particles; however, immunoelectron microscopy showed presumptive pentamer aggregates, and extracted protein reacted with conformation-specific and neutralizing monoclonal antibodies. Rabbits were injected with concentrated protein extract with Freund's incomplete adjuvant. All sera reacted with baculovirus-produced CRPV L1; however, they did not detectably neutralize infectivity in an in vitro assay. Vaccinated rabbits were, however, protected against wart development on subsequent challenge with live virus. This is the first evidence that a plant-derived papillomavirus vaccine is protective in an animal model and is a proof of concept for human papillomavirus vaccines produced in plants. Copyright © 2006, American Society for Microbiology. All Rights Reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background We have investigated the possibility and feasibility of producing the HPV-11 L1 major capsid protein in transgenic Arabidopsis thaliana ecotype Columbia and Nicotiana tabacum cv. Xanthi as potential sources for an inexpensive subunit vaccine. Results Transformation of plants was only achieved with the HPV-11 L1 gene with the C-terminal nuclear localization signal (NLS-) encoding region removed, and not with the full-length gene. The HPV-11 L1 NLS- gene was stably integrated and inherited through several generations of transgenic plants. Plant-derived HPV-11 L1 protein was capable of assembling into virus-like particles (VLPs), although resulting particles displayed a pleomorphic phenotype. Neutralising monoclonal antibodies binding both surface-linear and conformation-specific epitopes bound the A. thaliana-derived particles and - to a lesser degree - the N. tabacum-derived particles, suggesting that plant-derived and insect cell-derived VLPs displayed similar antigenic properties. Yields of up to 12 μg/g of HPV-11 L1 NLS- protein were harvested from transgenic A. thaliana plants, and 2 μg/g from N. tabacum plants - a significant increase over previous efforts. Immunization of New Zealand white rabbits with ∼50 μg of plant-derived HPV-11 L1 NLS- protein induced an antibody response that predominantly recognized insect cell-produced HPV-11 L1 NLS- and not NLS+ VLPs. Evaluation of the same sera concluded that none of them were able to neutralise pseudovirion in vitro. Conclusion We expressed the wild-type HPV-11 L1 NLS- gene in two different plant species and increased yields of HPV-11 L1 protein by between 500 and 1000-fold compared to previous reports. Inoculation of rabbits with extracts from both plant types resulted in a weak immune response, and antisera neither reacted with native HPV-11 L1 VLPs, nor did they neutralise HPV-11 pseudovirion infectivity. This has important and potentially negative implications for the production of HPV-11 vaccines in plants. © 2007 Kohl et al; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human papillomaviruses (HPV) are responsible for the most common human sexually transmitted viral infections, and high-risk types are responsible for causing cervical and other cancers. The minor capsid protein L2 of HPV plays important roles in virus entry into cells, localisation of viral components to the nucleus, in DNA binding, capsid formation and stability. It also elicits antibodies that are more cross-reactive between HPV types than does the major capsid protein L1, making it an attractive potential target for new-generation, more broadly protective subunit vaccines against HPV infections. However, its low abundance in natural capsids-12-72 molecules per 360 copies of L1-limits its immunogenicity. This review will explore the biological roles of the protein, and prospects for its use in new vaccines. © 2009 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past few years, plant biotechnology has gone beyond traditional agricultural production of food, feed and fibre, and moved to address more complex contemporary health, social and industrial challenges. The new era involves production of novel pharmaceutical products, speciality and fine chemicals, phytoremediation and production of renewable energy resources to replace non-renewable fossil fuels. Plants have been shown to provide a genuine and low-cost alternative production system for high-value products. Currently, the principal plant-made products include antibodies, feed additives, vaccine antigens and hormones for human and animal health, and industrial proteins. Despite the unique advantages of scalability, cost and product safety, issues of politics, environmental impact, regulation and socioeconomics still limit the adoption of biopharmaceuticals, especially in the developing world. Plant-based production systems have further complicated biosafety, gene flow and environmental impact assessments with generally genetically modified plants, topics that are already partially understood. This article provides a background to biopharming, highlighting basic considerations for risk assessment and regulation in developing countries, with an emphasis on plant-based vaccine production in South Africa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of vaccine strategies against human papillomavirus (HPV), which causes cervical cancer, is a priority. We investigated the use of virus-like particles (VLPs) of the most prevalent type, HPV-16, as carriers of foreign proteins. Green fluorescent protein (GFP) was fused to the N or C terminus of both L1 and L2, with L2 chimeras being co-expressed with native L1. Purified chimaeric VLPs were comparable in size (∼55 nm) to native HPV VLPs. Conformation-specific monoclonal antibodies (Mabs) bound to the VLPs, thereby indicating that they possibly retain their antigenicity. In addition, all of the VLPs encapsidated DNA in the range of 6-8 kb. © 2007 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The "AIDS Vaccine 2008" Conference was held in Cape Town, South Africa (October 13 to 16, 2008) and organized, under the aegis of the Global HIV Vaccine Enterprise, by Dr. Lynn Morris (Chair of the Conference) National Institute of Communicable Diseases; Dr. Koleka Mlisana from CAPRISA, University KwaZulu-Natal, Durban, Dr. Glenda Gray from Perinatal HIV Research Unit, University Witwatersrand, Johannesburg and Dr. Carolyn Williamson from Institute of Infectious Diseses. and Molecular Medicine, UCT, Cape Town (Co-Chairs of the Conference). Since the first AIDS Vaccine conference, organized in Paris in 2000, this was the first time it was held outside of the U.S. and Europe, and involved nearly 1,000 participants. Besides three Plenary Sessions with ten state-of-the-art plenary lectures and one Keynote Lecture given by Dr. A.S. Fauci (Director of NIAID, NIH, USA), the Conference was organized in nine oral sessions, four poster discussion groups covering a wide spectrum of scientific information relating to HIV vaccine research and development. Moreover three Symposia, two Special Sessions, one Roundtable as well as two Debates were held, the latter focusing on current controversial topics. The conference opening was memorable for a number of reasons: among these was the presence of South Africa's new Minister of Health, Barbara Hogan who, in her first speech in a major forum as a senior member of the SA Government, affirmed that HIV causes AIDS, and that the search for a vaccine is of paramount importance to SA and the rest of the world. A scientific summary of the Conference is reported in the present article, divided into four major topics: (1) vaccine concepts and design; (2) T-cell immunology and innate immunity; (3) B-cell immunology, neutralizing antibodies and mucosal immunology; and (4) clinical trials. © 2009 Landes Bioscience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to elicit cross-neutralizing antibodies makes human papillomavirus (HPV) L2 capsid protein a possible HPV vaccine. We examined and compared the humoral response of mice immunized with a HPV-16 L2 DNA vaccine or with HPV-16 L2 protein. The L2 DNA vaccine elicited a non-neutralizing antibody response unlike the L2 protein. L2 DNA vaccination suppressed the growth of L2-expressing C3 tumor cells, which is a T cell mediated effect, demonstrating that the lack of non-neutralizing antibody induction by L2 DNA was not caused by lack of T cell immunogenicity of the construct. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia continues to be a major pathogen of koalas. The bacterium is associated with ocular, respiratory and urogenital tract infections and a vaccine is considered the best option to limit the decline of mainland koala populations. Over the last 20 years, efforts to develop a chlamydial vaccine in humans have focussed on the use of the chlamydial major outer membrane protein (MOMP). Potential problems with the use of MOMP-based vaccines relate to the wide range of genetic diversity in its four variable domains. In the present study, we evaluated the immune response of koalas vaccinated with a MOMP-based C. pecorum vaccine formulated with genetically and serologically diverse MOMPs. Animals immunised with individual MOMPs developed strong antibody and lymphocyte proliferation responses to both homologous as well as heterologous MOMP proteins. Importantly, we also showed that vaccine induced antibodies which effectively neutralised various heterologous strains of koala C. pecorum in an in vitro assay. Finally, we also demonstrated that the immune responses in monovalent as well as polyvalent MOMP vaccine groups were able to recognise whole chlamydial elementary bodies, illustrating the feasibility of developing an effective MOMP based C. pecorum vaccine that could protect against a range of strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Objectives  In Australia, the risk of transfusion-transmitted malaria is managed through the identification of ‘at-risk’ donors, antibody screening enzyme-linked immunoassay (EIA) and, if reactive, exclusion from fresh blood component manufacture. Donor management depends on the duration of exposure in malarious regions (>6 months: ‘Resident’, <6 months: ‘Visitor’) or a history of malaria diagnosis. We analysed antibody testing and demographic data to investigate antibody persistence dynamics. To assess the yield from retesting 3 years after an initial EIA reactive result, we estimated the proportion of donors who would become non-reactive over this period. Materials and Methods  Test results and demographic data from donors who were malaria EIA reactive were analysed. Time since possible exposure was estimated and antibody survival modelled. Results  Among seroreverters, the time since last possible exposure was significantly shorter in ‘Visitors’ than in ‘Residents’. The antibody survival modelling predicted 20% of previously EIA reactive ‘Visitors’, but only 2% of ‘Residents’ would become non-reactive within 3 years of their first reactive EIA. Conclusion  Antibody persistence in donors correlates with exposure category, with semi-immune ‘Residents’ maintaining detectable antibodies significantly longer than non-immune ‘Visitors’.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we report an ultrasensitive method for detecting bio-active compounds in biological samples by means of functionalised nanoparticles interrogated by surface enhanced Raman spectroscopy (SERS). This method is applicable to the recovery and detection of many diagnostically important peptidyl analytes such as insulin, human growth hormone, growth factors (IGFs) and erythropoietin (EPO), as well as many small molecule analytes and metabolites. Our method, developed to detect EPO, demonstrates its utility in a complex yet well defined biological system. Recombinant human EPO (rhEPO) and EPO analogues have successfully been used to treat anaemia in end-stage renal failure, chronic disorders and infections, cancer and AIDS. Current methods for EPO testing are lengthy, laborious and relatively insensitive to low concentrations. In our rapid screening methodology, gold nanoparticles were functionalised with anti-EPO antibodies to provide very high selectivity towards the EPO protein in urine. These “smart sensor” nanoparticles interact with and trap EPO. Subsequent SERS screening allows for the detection and quantisation of ultra trace amounts (<<10-15 M) of EPO in urine samples with minimal sample preparation. We present data showing that the SERS spectrum differentiates between human endogenous EPO and rhEPO in unpurified urine, and potentially distinguishes between purified EPO isoforms. The elimination of sample preparation and direct screening in biological fluids significantly reduces the time required by current methods. Antibody recognition against a variety of biological targets and the availability of portable commercial SERS analysers for rapid onsite testing suggest broad diagnostic applicability in a flexible analytical platform.