813 resultados para vision control
em Queensland University of Technology - ePrints Archive
Resumo:
The article described an open-source toolbox for machine vision called Machine Vision Toolbox (MVT). MVT includes more than 60 functions including image file reading and writing, acquisition, display, filtering, blob, point and line feature extraction, mathematical morphology, homographies, visual Jacobians, camera calibration, and color space conversion. MVT can be used for research into machine vision but is also versatile enough to be usable for real-time work and even control. MVT, combined with MATLAB and a model workstation computer, is a useful and convenient environment for the investigation of machine vision algorithms. The article illustrated the use of a subset of toolbox functions for some typical problems and described MVT operations including the simulation of a complete image-based visual servo system.
Resumo:
The application of high-speed machine vision for close-loop position control, or visual servoing, of a robot manipulator. It provides a comprehensive coverage of all aspects of the visual servoing problem: robotics, vision, control, technology and implementation issues. While much of the discussion is quite general the experimental work described is based on the use of a high-speed binary vision system with a monocular "eye-in-hand" camera.
Resumo:
This thesis presents an approach for a vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structure such as light and power distribution poles is a difficult task. There are challenges involved with developing such an inspection system, such as flying in close proximity to a target while maintaining a fixed stand-off distance from it. The contributions of this thesis fall into three main areas. Firstly, an approach to vehicle dynamic modeling is evaluated in simulation and experiments. Secondly, EKF-based state estimators are demonstrated, as well as estimator-free approaches such as image based visual servoing (IBVS) validated with motion capture ground truth data. Thirdly, an integrated pole inspection system comprising a VTOL platform with human-in-the-loop control, (shared autonomy) is demonstrated. These contributions are comprehensively explained through a series of published papers.
Resumo:
The ninth release of the Toolbox, represents over fifteen years of development and a substantial level of maturity. This version captures a large number of changes and extensions generated over the last two years which support my new book “Robotics, Vision & Control”. The Toolbox has always provided many functions that are useful for the study and simulation of classical arm-type robotics, for example such things as kinematics, dynamics, and trajectory generation. The Toolbox is based on a very general method of representing the kinematics and dynamics of serial-link manipulators. These parameters are encapsulated in MATLAB ® objects - robot objects can be created by the user for any serial-link manipulator and a number of examples are provided for well know robots such as the Puma 560 and the Stanford arm amongst others. The Toolbox also provides functions for manipulating and converting between datatypes such as vectors, homogeneous transformations and unit-quaternions which are necessary to represent 3-dimensional position and orientation. This ninth release of the Toolbox has been significantly extended to support mobile robots. For ground robots the Toolbox includes standard path planning algorithms (bug, distance transform, D*, PRM), kinodynamic planning (RRT), localization (EKF, particle filter), map building (EKF) and simultaneous localization and mapping (EKF), and a Simulink model a of non-holonomic vehicle. The Toolbox also including a detailed Simulink model for a quadcopter flying robot.
Resumo:
The research described in this paper is directed toward increasing productivity of draglines through automation. In particular, it focuses on the swing-to-dump, dump, and return-to-dig phases of the dragline operational cycle by developing a swing automation system. In typical operation the dragline boom can be in motion for up to 80% of the total cycle time. This provides considerable scope for improving cycle time through automated or partially automated boom motion control. This paper describes machine vision based sensor technology and control algorithms under development to solve the problem of continuous real time bucket location and control. Incorporation of this capability into existing dragline control systems will then enable true automation of dragline swing and dump operations.
Resumo:
This paper, which serves as an introduction to the mini-symposium on Real-Time Vision, Tracking and Control, provides a broad sketch of visual servoing, the application of real-time vision, tracking and control for robot guidance. It outlines the basic theoretical approaches to the problem, describes a typical architecture, and discusses major milestones, applications and the significant vision sub-problems that must be solved.
Resumo:
The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, commonly employ Bank-to-Turn ma- neuvers to change heading and thus direction of travel. Whilst effective, banking an aircraft during the inspection of ground based features hinders data collection, with body fixed sen- sors angled away from the direction of turn and a panning motion induced through roll rate that can reduce data quality. By adopting Skid-to-Turn maneuvers, the aircraft can change heading whilst maintaining wings level flight, thus allowing body fixed sensors to main- tain a downward facing orientation. An Image-Based Visual Servo controller is developed to directly control the position of features as captured by onboard inspection sensors. This improves on the indirect approach taken by other tracking controllers where a course over ground directly above the feature is assumed to capture it centered in the field of view. Performance of the proposed controller is compared against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to replicate the field of view of a body fixed camera.
Resumo:
Previous research has suggested that perceptual-motor difficulties may account for obese children's lower motor competence; however, specific evidence is currently lacking. Therefore, this study examined the effect of altered visual conditions on spatiotemporal and kinematic gait parameters in obese versus normal-weight children. Thirty-two obese and normal-weight children (11.2 ± 1.5 years) walked barefoot on an instrumented walkway at constant self-selected speed during LIGHT and DARK conditions. Three-dimensional motion analysis was performed to calculate spatiotemporal parameters, as well as sagittal trunk segment and lower extremity joint angles at heel-strike and toe-off. Self-selected speed did not significantly differ between groups. In the DARK condition, all participants walked at a significantly slower speed, decreased stride length, and increased stride width. Without normal vision, obese children had a more pronounced increase in relative double support time compared to the normal-weight group, resulting in a significantly greater percentage of the gait cycle spent in stance. Walking in the DARK, both groups showed greater forward tilt of the trunk and restricted hip movement. All participants had increased knee flexion at heel-strike, as well as decreased knee extension and ankle plantarflexion at toe-off in the DARK condition. The removal of normal vision affected obese children's temporal gait pattern to a larger extent than that of normal-weight peers. Results suggest an increased dependency on vision in obese children to control locomotion. Next to the mechanical problem of moving excess mass, a different coupling between perception and action appears to be governing obese children's motor coordination and control.
Resumo:
The practice of robotics and computer vision each involve the application of computational algorithms to data. The research community has developed a very large body of algorithms but for a newcomer to the field this can be quite daunting. For more than 10 years the author has maintained two open-source MATLAB® Toolboxes, one for robotics and one for vision. They provide implementations of many important algorithms and allow users to work with real problems, not just trivial examples. This new book makes the fundamental algorithms of robotics, vision and control accessible to all. It weaves together theory, algorithms and examples in a narrative that covers robotics and computer vision separately and together. Using the latest versions of the Toolboxes the author shows how complex problems can be decomposed and solved using just a few simple lines of code. The topics covered are guided by real problems observed by the author over many years as a practitioner of both robotics and computer vision. It is written in a light but informative style, it is easy to read and absorb, and includes over 1000 MATLAB® and Simulink® examples and figures. The book is a real walk through the fundamentals of mobile robots, navigation, localization, arm-robot kinematics, dynamics and joint level control, then camera models, image processing, feature extraction and multi-view geometry, and finally bringing it all together with an extensive discussion of visual servo systems.
Resumo:
The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, traditionally employ Bank-to-Turn maneuvers to change heading and thus direction of travel. Commonly overlooked is the effect these maneuvers have on downward facing body fixed sensors, which as a result of bank, point away from the feature during turns. By adopting Skid-to-Turn maneuvers, the aircraft is able change heading whilst maintaining wings level flight, thus allowing body fixed sensors to maintain a downward facing orientation. Eliminating roll also helps to improve data quality, as sensors are no longer subjected to the swinging motion induced as they pivot about an axis perpendicular to their line of sight. Traditional tracking controllers that apply an indirect approach of capturing ground based data by flying directly overhead can also see the feature off center due to steady state pitch and roll required to stay on course. An Image Based Visual Servo controller is developed to address this issue, allowing features to be directly tracked within the image plane. Performance of the proposed controller is tested against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to simulate the field of view of a body fixed camera.
Resumo:
The future emergence of many types of airborne vehicles and unpiloted aircraft in the national airspace means collision avoidance is of primary concern in an uncooperative airspace environment. The ability to replicate a pilot’s see and avoid capability using cameras coupled with vision based avoidance control is an important part of an overall collision avoidance strategy. But unfortunately without range collision avoidance has no direct way to guarantee a level of safety. Collision scenario flight tests with two aircraft and a monocular camera threat detection and tracking system were used to study the accuracy of image-derived angle measurements. The effect of image-derived angle errors on reactive vision-based avoidance performance was then studied by simulation. The results show that whilst large angle measurement errors can significantly affect minimum ranging characteristics across a variety of initial conditions and closing speeds, the minimum range is always bounded and a collision never occurs.
Resumo:
This work presents a collision avoidance approach based on omnidirectional cameras that does not require the estimation of range between two platforms to resolve a collision encounter. Our method achieves minimum separation between the two vehicles involved by maximising the view-angle given by the omnidirectional sensor. Only visual information is used to achieve avoidance under a bearing- only visual servoing approach. We provide theoretical problem formulation, as well as results from real flights using small quadrotors
Resumo:
Background: The transmission of soil-transmitted helminths (STHs) is associated with poverty, poor hygiene behaviour, lack of clean water and inadequate waste disposal and sanitation. Periodic administration of benzimidazole drugs is the mainstay for global STH control but it does not prevent re-infection, and is unlikely to interrupt transmission as a stand-alone intervention. Findings: We reported recently on the development and successful testing in Hunan province, PR China, of a health education package to prevent STH infections in Han Chinese primary school students. We have recently commenced a new trial of the package in the ethnically diverse Xishuangbanna autonomous prefecture in Yunnan province and the approach is also being tested in West Africa, with further expansion into the Philippines in 2015. Conclusions: The work in China illustrates well the direct impact that health education can have in improving knowledge and awareness, and in changing hygiene behaviour. Further, it can provide insight into the public health outcomes of a multi-component integrated control program, where health education prevents re-infection and periodic drug treatment reduces prevalence and morbidity.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is both arduous and dangerous. Visual servoing is a means of integrating noncontact visual sensing with machine control to augment or replace operator based control. This article describes two of our current mining automation projects in order to demonstrate some, perhaps unusual, applications of visual servoing, and also to illustrate some very real problems with robust computer vision