446 resultados para user click behavior
em Queensland University of Technology - ePrints Archive
Resumo:
Continuous user authentication with keystroke dynamics uses characters sequences as features. Since users can type characters in any order, it is imperative to find character sequences (n-graphs) that are representative of user typing behavior. The contemporary feature selection approaches do not guarantee selecting frequently-typed features which may cause less accurate statistical user-representation. Furthermore, the selected features do not inherently reflect user typing behavior. We propose four statistical based feature selection techniques that mitigate limitations of existing approaches. The first technique selects the most frequently occurring features. The other three consider different user typing behaviors by selecting: n-graphs that are typed quickly; n-graphs that are typed with consistent time; and n-graphs that have large time variance among users. We use Gunetti’s keystroke dataset and k-means clustering algorithm for our experiments. The results show that among the proposed techniques, the most-frequent feature selection technique can effectively find user representative features. We further substantiate our results by comparing the most-frequent feature selection technique with three existing approaches (popular Italian words, common n-graphs, and least frequent ngraphs). We find that it performs better than the existing approaches after selecting a certain number of most-frequent n-graphs.
Resumo:
Most current computer systems authorise the user at the start of a session and do not detect whether the current user is still the initial authorised user, a substitute user, or an intruder pretending to be a valid user. Therefore, a system that continuously checks the identity of the user throughout the session is necessary without being intrusive to end-user and/or effectively doing this. Such a system is called a continuous authentication system (CAS). Researchers have applied several approaches for CAS and most of these techniques are based on biometrics. These continuous biometric authentication systems (CBAS) are supplied by user traits and characteristics. One of the main types of biometric is keystroke dynamics which has been widely tried and accepted for providing continuous user authentication. Keystroke dynamics is appealing for many reasons. First, it is less obtrusive, since users will be typing on the computer keyboard anyway. Second, it does not require extra hardware. Finally, keystroke dynamics will be available after the authentication step at the start of the computer session. Currently, there is insufficient research in the CBAS with keystroke dynamics field. To date, most of the existing schemes ignore the continuous authentication scenarios which might affect their practicality in different real world applications. Also, the contemporary CBAS with keystroke dynamics approaches use characters sequences as features that are representative of user typing behavior but their selected features criteria do not guarantee features with strong statistical significance which may cause less accurate statistical user-representation. Furthermore, their selected features do not inherently incorporate user typing behavior. Finally, the existing CBAS that are based on keystroke dynamics are typically dependent on pre-defined user-typing models for continuous authentication. This dependency restricts the systems to authenticate only known users whose typing samples are modelled. This research addresses the previous limitations associated with the existing CBAS schemes by developing a generic model to better identify and understand the characteristics and requirements of each type of CBAS and continuous authentication scenario. Also, the research proposes four statistical-based feature selection techniques that have highest statistical significance and encompasses different user typing behaviors which represent user typing patterns effectively. Finally, the research proposes the user-independent threshold approach that is able to authenticate a user accurately without needing any predefined user typing model a-priori. Also, we enhance the technique to detect the impostor or intruder who may take over during the entire computer session.
Resumo:
With the emergence of Web 2.0, Web users can classify Web items of their interest by using tags. Tags reflect users’ understanding to the items collected in each tag. Exploring user tagging behavior provides a promising way to understand users’ information needs. However, free and relatively uncontrolled vocabulary has its drawback in terms of lack of standardization and semantic ambiguity. Moreover, the relationships among tags have not been explored even there exist rich relationships among tags which could provide valuable information for us to better understand users. In this paper, we propose a novel approach to construct tag ontology based on the widely used general ontology WordNet to capture the semantics and the structural relationships of tags. Ambiguity of tags is a challenging problem to deal with in order to construct high quality tag ontology. We propose strategies to find the semantic meanings of tags and a strategy to disambiguate the semantics of tags based on the opinion of WordNet lexicographers. In order to evaluate the usefulness of the constructed tag ontology, in this paper we apply the extracted tag ontology in a tag recommendation experiment. We believe this is the first application of tag ontology for recommendation making. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.
Resumo:
Due to the explosive growth of the Web, the domain of Web personalization has gained great momentum both in the research and commercial areas. One of the most popular web personalization systems is recommender systems. In recommender systems choosing user information that can be used to profile users is very crucial for user profiling. In Web 2.0, one facility that can help users organize Web resources of their interest is user tagging systems. Exploring user tagging behavior provides a promising way for understanding users’ information needs since tags are given directly by users. However, free and relatively uncontrolled vocabulary makes the user self-defined tags lack of standardization and semantic ambiguity. Also, the relationships among tags need to be explored since there are rich relationships among tags which could provide valuable information for us to better understand users. In this paper, we propose a novel approach for learning tag ontology based on the widely used lexical database WordNet for capturing the semantics and the structural relationships of tags. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. To personalize further, clustering of users is performed to generate a more accurate ontology for a particular group of users. In order to evaluate the usefulness of the tag ontology, we use the tag ontology in a pilot tag recommendation experiment for improving the recommendation performance by exploiting the semantic information in the tag ontology. The initial result shows that the personalized information has improved the accuracy of the tag recommendation.
Resumo:
Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and thus help them in making good decisions about which product to buy from the vast number of product choices available to them. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based recommender system approaches. These approaches are not suitable for recommending luxurious and infrequently purchased products as they rely on a large amount of ratings data that is not usually available for such products. This research aims to explore novel approaches for recommending infrequently purchased products by exploiting user generated content such as user reviews and product click streams data. From reviews on products given by the previous users, association rules between product attributes are extracted using an association rule mining technique. Furthermore, from product click streams data, user profiles are generated using the proposed user profiling approach. Two recommendation approaches are proposed based on the knowledge extracted from these resources. The first approach is developed by formulating a new query from the initial query given by the target user, by expanding the query with the suitable association rules. In the second approach, a collaborative-filtering recommender system and search-based approaches are integrated within a hybrid system. In this hybrid system, user profiles are used to find the target user’s neighbour and the subsequent products viewed by them are then used to search for other relevant products. Experiments have been conducted on a real world dataset collected from one of the online car sale companies in Australia to evaluate the effectiveness of the proposed recommendation approaches. The experiment results show that user profiles generated from user click stream data and association rules generated from user reviews can improve recommendation accuracy. In addition, the experiment results also prove that the proposed query expansion and the hybrid collaborative filtering and search-based approaches perform better than the baseline approaches. Integrating the collaborative-filtering and search-based approaches has been challenging as this strategy has not been widely explored so far especially for recommending infrequently purchased products. Therefore, this research will provide a theoretical contribution to the recommender system field as a new technique of combining collaborative-filtering and search-based approaches will be developed. This research also contributes to a development of a new query expansion technique for infrequently purchased products recommendation. This research will also provide a practical contribution to the development of a prototype system for recommending cars.
Resumo:
Special collections, because of the issues associated with conservation and use, a feature they share with archives, tend to be the most digitized areas in libraries. The Nineteenth Century Schoolbooks collection is a collection of 9000 rarely held nineteenth-century schoolbooks that were painstakingly collected over a lifetime of work by Prof. John A. Nietz, and donated to the Hillman Library at the University of Pittsburgh in 1958, which has since grown to 15,000. About 140 of these texts are completely digitized and showcased in a publicly accessible website through the University of Pittsburgh’s Library, along with a searchable bibliography of the entire collection, which expanded the awareness of this collection and its user base to beyond the academic community. The URL for the website is http://digital.library.pitt.edu/nietz/. The collection is a rich resource for researchers studying the intellectual, educational, and textbook publishing history of the United States. In this study, we examined several existing records collected by the Digital Research Library at the University of Pittsburgh in order to determine the identity and searching behaviors of the users of this collection. Some of the records examined include: 1) The results of a 3-month long user survey, 2) User access statistics including search queries for a period of one year, a year after the digitized collection became publicly available in 2001, and 3) E-mail input received by the website over 4 years from 2000-2004. The results of the study demonstrate the differences in online retrieval strategies used by academic researchers and historians, archivists, avocationists, and the general public, and the importance of facilitating the discovery of digitized special collections through the use of electronic finding aids and an interactive interface with detailed metadata.
Resumo:
Human age is surrounded by assumed set of rules and behaviors imposed by local culture and the society they live in. This paper introduces software that counts the presence of a person on the Internet and examines the activities he/she conducts online. The paper answers questions such as how "old" are you on the Internet? How soon will a newbie be exposed to adult websites? How long will it take for a new Internet user to know about social networking sites? And how many years a user has to surf online to celebrate his/her first "birthday" of Internet presence? Paper findings from a database of 105 school and university students containing their every click of first 24 hours of Internet usage are presented. The findings provide valuable insights for Internet Marketing, ethics, Internet business and the mapping of Internet life with real life. Privacy and ethical issues related to the study have been discussed at the end. © Springer Science+Business Media B.V. 2010.
Resumo:
As more and more information is available on the Web finding quality and reliable information is becoming harder. To help solve this problem, Web search models need to incorporate users’ cognitive styles. This paper reports the preliminary results from a user study exploring the relationships between Web users’ searching behavior and their cognitive style. The data was collected using a questionnaire, Web search logs and think-aloud strategy. The preliminary findings reveal a number of cognitive factors, such as information searching processes, results evaluations and cognitive style, having an influence on users’ Web searching behavior. Among these factors, the cognitive style of the user was observed to have a greater impact. Based on the key findings, a conceptual model of Web searching and cognitive styles is presented.
Resumo:
User-Web interactions have emerged as an important research in the field of information science. In this study, we examine extensively the Web searching performed by general users. Our goal is to investigate the effects of users’ cognitive styles on their Web search behavior in relation to two broad components: Information Searching and Information Processing Approaches. We use questionnaires, a measure of cognitive style, Web session logs and think-aloud as the data collection instruments. Our study findings show wholistic Web users tend to adopt a top-down approach to Web searching, where the users searched for a generic topic, and then reformulate their queries to search for specific information. They tend to prefer reading to process information. Analytic users tend to prefer a bottom-up approach to information searching and they process information by scanning search result pages.
Resumo:
Personalised social matching systems can be seen as recommender systems that recommend people to others in the social networks. However, with the rapid growth of users in social networks and the information that a social matching system requires about the users, recommender system techniques have become insufficiently adept at matching users in social networks. This paper presents a hybrid social matching system that takes advantage of both collaborative and content-based concepts of recommendation. The clustering technique is used to reduce the number of users that the matching system needs to consider and to overcome other problems from which social matching systems suffer, such as cold start problem due to the absence of implicit information about a new user. The proposed system has been evaluated on a dataset obtained from an online dating website. Empirical analysis shows that accuracy of the matching process is increased, using both user information (explicit data) and user behavior (implicit data).
Resumo:
Dhaka, the capital of Bangladesh, is facing severe traffic congestion. Owing to the flaws in past land use and transport planning decisions, uncontrolled population growth and urbanization, Dhaka’s traffic condition is worsening. Road space is widely regarded in the literature as a utility, so a common view of transport economists is that its usage ought to be charged. Road pricing policy has proven to be effective in managing travel demand, in order to reduce traffic congestion from road networks in a number of cities including London, Stockholm and Singapore. Road pricing as an economic mechanism to manage travel demand can be more effective and user-friendly when revenue is hypothecated into supply alternatives such as improvements to the transit system. This research investigates the feasibility of adopting road pricing in Dhaka with respect to a significant Bus Rapid Transit (BRT) project. Because both are very new concepts for the population of Dhaka, public acceptability would be a principal issue driving their success or failure. This paper explores the travel behaviour of workers in Dhaka and public perception toward Road Pricing with regards to work trips- based on worker’s travel behaviour. A revealed preference and stated preference survey has been conducted on sample of workers in Dhaka. They were asked limited demographic questions, their current travel behaviour and at the end they had been given several hypothetical choices of integrated BRT and road pricing to choose from. Key finding from the survey is the objective of integrated road pricing; subsidies Bus rapid Transit by road pricing to get reduced BRT fare; cannot be achieved in Dhaka. This is because most of the respondent stated that they would choose the cheapest option Walk-BRT-Walk, even though this would be more time consuming and uncomfortable as they have to walk from home to BRT station and also from BRT station to home. Proper economic analysis has to be carried out to find out the appropriate fare of BRT and road charge with some incentive for the low income people.
Resumo:
The cross-sections of the Social Web and the Semantic Web has put folksonomy in the spot light for its potential in overcoming knowledge acquisition bottleneck and providing insight for "wisdom of the crowds". Folksonomy which comes as the results of collaborative tagging activities has provided insight into user's understanding about Web resources which might be useful for searching and organizing purposes. However, collaborative tagging vocabulary poses some challenges since tags are freely chosen by users and may exhibit synonymy and polysemy problem. In order to overcome these challenges and boost the potential of folksonomy as emergence semantics we propose to consolidate the diverse vocabulary into a consolidated entities and concepts. We propose to extract a tag ontology by ontology learning process to represent the semantics of a tagging community. This paper presents a novel approach to learn the ontology based on the widely used lexical database WordNet. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. We provide empirical evaluations by using the semantic information contained in the ontology in a tag recommendation experiment. The results show that by using the semantic relationships on the ontology the accuracy of the tag recommender has been improved.
Resumo:
Background: General practitioners (GPs) and nurses are ideally placed to address the significant unmet demand for the treatment of cannabis-related problems given the numbers of people who regularly seek their care. The aim of this study was to evaluate differences between GPs and nurses’ perceived knowledge, beliefs, and behaviors toward cannabis use and its screening and management. Methods: This study involved 161 nurses and 503 GPs who completed a survey distributed via conference satchels to delegates of Healthed seminars focused on topics relevant to women and children’s health. Differences between GPs and nurses were analyzed using χ2- tests and two-sample t-tests, while logistic regression examined predictors of service provision. Results: GPs were more likely than nurses to have engaged in cannabis-related service provision, but also more frequently reported barriers related to time, interest, and having more important issues to address. Nurses reported less knowledge, skills, and role legitimacy. Perceived screening skills predicted screening and referral to alcohol and other drug (AOD) services, while knowing a regular user increased the likelihood of referrals only. Conclusions: Approaches to increase cannabis-related screening and intervention may be improved by involving nurses, and by leveraging the relationship between nurses and doctors, in primary care.
Resumo:
There are different ways to authenticate humans, which is an essential prerequisite for access control. The authentication process can be subdivided into three categories that rely on something someone i) knows (e.g. password), and/or ii) has (e.g. smart card), and/or iii) is (biometric features). Besides classical attacks on password solutions and the risk that identity-related objects can be stolen, traditional biometric solutions have their own disadvantages such as the requirement of expensive devices, risk of stolen bio-templates etc. Moreover, existing approaches provide the authentication process usually performed only once initially. Non-intrusive and continuous monitoring of user activities emerges as promising solution in hardening authentication process: iii-2) how so. behaves. In recent years various keystroke dynamic behavior-based approaches were published that are able to authenticate humans based on their typing behavior. The majority focuses on so-called static text approaches, where users are requested to type a previously defined text. Relatively few techniques are based on free text approaches that allow a transparent monitoring of user activities and provide continuous verification. Unfortunately only few solutions are deployable in application environments under realistic conditions. Unsolved problems are for instance scalability problems, high response times and error rates. The aim of this work is the development of behavioral-based verification solutions. Our main requirement is to deploy these solutions under realistic conditions within existing environments in order to enable a transparent and free text based continuous verification of active users with low error rates and response times.