4 resultados para theophylline

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

17.1 Drugs for bronchial asthma and Chronic Obstructive Pulmonary Disease (COPD) 17.1.1 Introduction to asthma 17.1.2 Introduction to COPD 17.1.3 Drug delivery by inhalation 17.1.4 Drugs to treat 17.1.4.1 β2-adrenoceptor agonists 17.1.4.2 Muscarinic receptor antagonists 17.1.4.3 Leukotriene receptor antagonists 17.1.4.4 Theophylline 17.1.4.5 Oxygen for COPD 17.1.5 Drugs to prevent asthma 31.5.1 Glucocorticoids 31.5.2 Cromolyn sodium 17.1.6 Combination to treat and prevent asthma 17.1.7 Drug for allergic asthma – omalizumab 17.1.8 Emergency treatment of asthma 17.2. Expectorants, mucolytics, cough and oxygen 17.2.1 Introduction to expectorants and mucolytics 17.2.2 Expectorants 17.2.3 Mucolytics 17.2.4 Cough 17.2.5 Oxygen 17.3. Drugs for rhinitis and rhinorrea 17.3.1 Introduction 17.3.2 Histamine and H1-receptor antagonists 17.3.3 Sympathomimetic 17.3.4 Muscarinic receptor antagonists 17.3.4 Cromolyn sodium 17.3.5 Glucocorticoids

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Globally, obesity and diabetes (particularly type 2 diabetes) represents a major challenge to world health. Despite decades of intense research efforts, the genetic basis involved in diabetes pathogenesis & conditions associated with obesity are still poorly understood. Recent advances have led to exciting new developments implicating epigenetics as an important mechanism underpinning diabetes and obesity related disease. One epigenetic mechanism known as the "histone code" describes the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as lysine acetyltransferases or KATs and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. Some of the known inhibitors of HDACs (HDACi) have also been shown to act as "chemical chaperones" to alleviate diabetic symptoms. In this review, we discuss the available evidence concerning the roles of HDACs in regulating chaperone function and how this may have implications in the management of diabetes. © 2009 Bentham Science Publishers Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Importance of the field: Reactive oxygen species (ROS) occur as natural by-products of oxygen metabolism and have important cellular functions. Normally, the cell is able to maintain an adequate balance between the formation and removal of ROS either via anti-oxidants or through the use specific enzymatic pathways. However, if this balance is disturbed, oxidative stress may occur in the cell, a situation linked to the pathogenesis of many diseases, including cancer. Areas covered in this review: HDACs are important regulators of many oxidative stress pathways including those involved with both sensing and coordinating the cellular response to oxidative stress. In particular aberrant regulation of these pathways by histone deacetylases may play critical roles in cancer progression. What the reader will gain: In this review we discuss the notion that targeting HDACs may be a useful therapeutic avenue in the treatment of oxidative stress in cancer, using chronic obstructive pulmonary disease (COPD), NSCLC and hepatocellular carcinoma (HCC) as examples to illustrate this possibility. Take home message: Epigenetic mechanisms may be an important new therapeutic avenue for targeting oxidative stress in cancer. © 2010 Informa UK, Ltd.