365 resultados para state convergence

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An initialisation process is a key component in modern stream cipher design. A well-designed initialisation process should ensure that each key-IV pair generates a different key stream. In this paper, we analyse two ciphers, A5/1 and Mixer, for which this does not happen due to state convergence. We show how the state convergence problem occurs and estimate the effective key-space in each case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various time-memory tradeoffs attacks for stream ciphers have been proposed over the years. However, the claimed success of these attacks assumes the initialisation process of the stream cipher is one-to-one. Some stream cipher proposals do not have a one-to-one initialisation process. In this paper, we examine the impact of this on the success of time-memory-data tradeoff attacks. Under the circumstances, some attacks are more successful than previously claimed while others are less. The conditions for both cases are established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sfinks is a shift register based stream cipher designed for hardware implementation. The initialisation state update function is different from the state update function used for keystream generation. We demonstrate state convergence during the initialisation process, even though the individual components used in the initialisation are one-to-one. However, the combination of these components is not one-to-one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analysis of the stream cipher Mixer, a bit-based cipher with structural components similar to the well-known Grain cipher and the LILI family of keystream generators. Mixer uses a 128-bit key and 64-bit IV to initialise a 217-bit internal state. The analysis is focused on the initialisation function of Mixer and shows that there exist multiple key-IV pairs which, after initialisation, produce the same initial state, and consequently will generate the same keystream. Furthermore, if the number of iterations of the state update function performed during initialisation is increased, then the number of distinct initial states that can be obtained decreases. It is also shown that there exist some distinct initial states which produce the same keystream, resulting in a further reduction of the effective key space

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Well-designed initialisation and keystream generation processes for stream ciphers should ensure that each key-IV pair generates a distinct keystream. In this paper, we analyse some ciphers where this does not happen due to state convergence occurring either during initialisation, keystream generation or both. We show how state convergence occurs in each case and identify two mechanisms which can cause state convergence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Streamciphers are common cryptographic algorithms used to protect the confidentiality of frame-based communications like mobile phone conversations and Internet traffic. Streamciphers are ideal cryptographic algorithms to encrypt these types of traffic as they have the potential to encrypt them quickly and securely, and have low error propagation. The main objective of this thesis is to determine whether structural features of keystream generators affect the security provided by stream ciphers.These structural features pertain to the state-update and output functions used in keystream generators. Using linear sequences as keystream to encrypt messages is known to be insecure. Modern keystream generators use nonlinear sequences as keystream.The nonlinearity can be introduced through a keystream generator's state-update function, output function, or both. The first contribution of this thesis relates to nonlinear sequences produced by the well-known Trivium stream cipher. Trivium is one of the stream ciphers selected in a final portfolio resulting from a multi-year project in Europe called the ecrypt project. Trivium's structural simplicity makes it a popular cipher to cryptanalyse, but to date, there are no attacks in the public literature which are faster than exhaustive keysearch. Algebraic analyses are performed on the Trivium stream cipher, which uses a nonlinear state-update and linear output function to produce keystream. Two algebraic investigations are performed: an examination of the sliding property in the initialisation process and algebraic analyses of Trivium-like streamciphers using a combination of the algebraic techniques previously applied separately by Berbain et al. and Raddum. For certain iterations of Trivium's state-update function, we examine the sets of slid pairs, looking particularly to form chains of slid pairs. No chains exist for a small number of iterations.This has implications for the period of keystreams produced by Trivium. Secondly, using our combination of the methods of Berbain et al. and Raddum, we analysed Trivium-like ciphers and improved on previous on previous analysis with regards to forming systems of equations on these ciphers. Using these new systems of equations, we were able to successfully recover the initial state of Bivium-A.The attack complexity for Bivium-B and Trivium were, however, worse than exhaustive keysearch. We also show that the selection of stages which are used as input to the output function and the size of registers which are used in the construction of the system of equations affect the success of the attack. The second contribution of this thesis is the examination of state convergence. State convergence is an undesirable characteristic in keystream generators for stream ciphers, as it implies that the effective session key size of the stream cipher is smaller than the designers intended. We identify methods which can be used to detect state convergence. As a case study, theMixer streamcipher, which uses nonlinear state-update and output functions to produce keystream, is analysed. Mixer is found to suffer from state convergence as the state-update function used in its initialisation process is not one-to-one. A discussion of several other streamciphers which are known to suffer from state convergence is given. From our analysis of these stream ciphers, three mechanisms which can cause state convergence are identified.The effect state convergence can have on stream cipher cryptanalysis is examined. We show that state convergence can have a positive effect if the goal of the attacker is to recover the initial state of the keystream generator. The third contribution of this thesis is the examination of the distributions of bit patterns in the sequences produced by nonlinear filter generators (NLFGs) and linearly filtered nonlinear feedback shift registers. We show that the selection of stages used as input to a keystream generator's output function can affect the distribution of bit patterns in sequences produced by these keystreamgenerators, and that the effect differs for nonlinear filter generators and linearly filtered nonlinear feedback shift registers. In the case of NLFGs, the keystream sequences produced when the output functions take inputs from consecutive register stages are less uniform than sequences produced by NLFGs whose output functions take inputs from unevenly spaced register stages. The opposite is true for keystream sequences produced by linearly filtered nonlinear feedback shift registers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stream ciphers are symmetric key cryptosystems that are used commonly to provide confidentiality for a wide range of applications; such as mobile phone, pay TV and Internet data transmissions. This research examines the features and properties of the initialisation processes of existing stream ciphers to identify flaws and weaknesses, then presents recommendations to improve the security of future cipher designs. This research investigates well-known stream ciphers: A5/1, Sfinks and the Common Scrambling Algorithm Stream Cipher (CSA-SC). This research focused on the security of the initialisation process. The recommendations given are based on both the results in the literature and the work in this thesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Common Scrambling Algorithm Stream Cipher (CSASC) is a shift register based stream cipher designed to encrypt digital video broadcast. CSA-SC produces a pseudo-random binary sequence that is used to mask the contents of the transmission. In this paper, we analyse the initialisation process of the CSA-SC keystream generator and demonstrate weaknesses which lead to state convergence, slid pairs and shifted keystreams. As a result, the cipher may be vulnerable to distinguishing attacks, time-memory-data trade-off attacks or slide attacks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Total factor productivity plays an important role in the growth of the Indian economy. Using state-level data from 1993 to 2005 that were recently made available, we find widespread regional variation in productivity changes. In the years immediately following economic liberalization, productivity growth improved technical efficiency; however, in subsequent years, productivity growth was propelled by technological progress. We find a tendency toward convergence with regard to productivity growth among states; however, the states that were technically efficient when the economic reforms were instituted remained innovative in later years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrial applications of the simulated-moving-bed (SMB) chromatographic technology have brought an emergent demand to improve the SMB process operation for higher efficiency and better robustness. Improved process modelling and more-efficient model computation will pave a path to meet this demand. However, the SMB unit operation exhibits complex dynamics, leading to challenges in SMB process modelling and model computation. One of the significant problems is how to quickly obtain the steady state of an SMB process model, as process metrics at the steady state are critical for process design and real-time control. The conventional computation method, which solves the process model cycle by cycle and takes the solution only when a cyclic steady state is reached after a certain number of switching, is computationally expensive. Adopting the concept of quasi-envelope (QE), this work treats the SMB operation as a pseudo-oscillatory process because of its large number of continuous switching. Then, an innovative QE computation scheme is developed to quickly obtain the steady state solution of an SMB model for any arbitrary initial condition. The QE computation scheme allows larger steps to be taken for predicting the slow change of the starting state within each switching. Incorporating with the wavelet-based technique, this scheme is demonstrated to be effective and efficient for an SMB sugar separation process. Moreover, investigations are also carried out on when the computation scheme should be activated and how the convergence of the scheme is affected by a variable stepsize.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper compares three different methods of inclusion of current phasor measurements by phasor measurement units (PMUs) in the conventional power system state estimator. For each of the three methods, comprehensive formulation of the hybrid state estimator in the presence of conventional and PMU measurements is presented. The performance of the state estimator in the presence of conventional measurements and optimally placed PMUs is evaluated in terms of convergence characteristics and estimator accuracy. Test results on the IEEE 14-bus and IEEE 300-bus systems are analyzed to determine the best possible method of inclusion of PMU current phasor measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equations with a nonlinear source term (TSFFPE-NST), which involve the Caputo time fractional derivative (CTFD) of order α ∈ (0, 1) and the symmetric Riesz space fractional derivative (RSFD) of order μ ∈ (1, 2). Approximating the CTFD and RSFD using the L1-algorithm and shifted Grunwald method, respectively, a computationally effective numerical method is presented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method are investigated. Finally, numerical experiments are carried out to support the theoretical claims.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 'Queensland Model' grew out of three convergent agendas: educational renewal, urban redevelopment, and the Queensland state government's 'Smart State' strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three different methods of inclusion of current measurements by phasor measurement units (PMUs) in a power sysetm state estimator is investigated. A comprehensive formulation of the hybrid state estimator incorporating conventional, as well as PMU measurements, is presented for each of the three methods. The behaviour of the elements because of the current measurements in the measurement Jacobian matrix is examined for any possible ill-conditioning of the state estimator gain matrix. The performance of the state estimators are compared in terms of the convergence properties and the varian in the estimated states. The IEEE 14-bus and IEEE 300-bus systems are used as test beds for the study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel algorithm based on particle swarm optimization (PSO) to estimate the states of electric distribution networks. In order to improve the performance, accuracy, convergence speed, and eliminate the stagnation effect of original PSO, a secondary PSO loop and mutation algorithm as well as stretching function is proposed. For accounting uncertainties of loads in distribution networks, pseudo-measurements is modeled as loads with the realistic errors. Simulation results on 6-bus radial and 34-bus IEEE test distribution networks show that the distribution state estimation based on proposed DLM-PSO presents lower estimation error and standard deviation in comparison with algorithms such as WLS, GA, HBMO, and original PSO.