29 resultados para solid-phase crystallization (SPC)

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-phase organic chemistry has rapidly expanded in the last decade, and, as a consequence, so has the need for the development of supports that can withstand the extreme conditions required to facilitate some reactions. The authors here prepare a thermally stable, grafted fluoropolymer support (see Figure for an example) in three solvents, and found that the penetration of the graft was greatest in dichloromethane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-performance liquid chromatography coupled with solid phase extraction method was developed for determination of isofraxidin in rat plasma after oral administration of Acanthopanax senticosus extract (ASE), and pharmacokinetic parameters of isofraxidin either in ASE or pure compound were measured. The HPLC analysis was performed on a Dikma Diamonsil RP(18) column (4.6 mm x 150 mm, 5 microm) with the isocratic elution of solvent A (acetonitrile) and solvent B (0.1% aqueous phosphoric acid, v/v) (A : B = 22 : 78) and the detection wavelength was set at 343 nm. The calibration curve was linear over the range of 0.156-15.625 microg/ml. The limit of detection was 60 ng/ml. The intra-day precision was 5.8%, and the inter-day precision was 6.0%. The recovery was 87.30+/-1.73%. When the dosage of ASE is equal to pure compound caculated by the amount of isofraxidin, it has been found to have two maximum concentrations in plasma while the pure compound only showed one peak in the plasma concentration-time curve. The determined content of isofraxidin in plasma after oral administration of ASE is the total contents of free isofraxidin and its precursors in ASE in vitro. The pharmacokinetic characteristics of ASE showed the priority of the extract and the properities of traditional Chinese medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High performance liquid chromatography (HPLC) coupled with the solid phase extraction method was developed for determining cimifugin (a coumarin derivative; one of Saposhnikovia divaricatae's constituents) in rat plasma after oral administration of Saposhnikovia divaricatae extract (SDE), and the pharmacokinetics of cimifugin either in SDE or as a single compound was investigated. The HPLC analysis was performed on a commercially available column (4.6 mm x 200 mm, 5 pm) with the isocratic elution of solvent A (Methanol) and solvent B (Water) (A:B=60:40) and the detection wavelength was set at 250 nm. The calibration curve was linear over the range of 0.100-10.040 microg/mL. The limit of detection was 30 ng/mL. At the rat plasma concentrations of 0.402, 4.016, 10.040 microg/mL, the intra-day precision was 6.21%, 3.98%, and 2.23%; the inter-day precision was 7.59%, 4.26%, and 2.09%, respectively. The absolute recovery was 76.58%, 76.61%, and 77.67%, respectively. When the dosage of SDE was equal to the pure compound calculated by the amount of cimifugin, it was found to have two maximum peaks while the pure compound only showed one peak in the plasma concentration-time curve. The pharmacokinetic characteristics of SDE showed the superiority of the extract and the properties of traditional Chinese medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanically interlocked molecules, such as catenanes and rotaxanes, are fascinating due to their unique sensing and catalytic properties and their potential to act as molecular motors or switches. Traditionally their synthesis has been laborious and expensive, however this research project endeavoured to overcome this challenge by exploring novel ways of preparing mechanically interlocked molecules both in solution and on surfaces. A series of disulfide-linked macrocycles, [2]catenanes and [2]rotaxanes were synthesised in solution using reversible dynamic covalent chemistry. Subsequently, the interlocked architectures were adapted into solid-tethered systems via attachment to swelling polystyrene resins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for determination of tricyclazole in water using solid phase extraction and high performance liquid chromatography (HPLC) with UV detection at 230nm and a mobile phase of acetonitrile:water (20:80, v/v) was developed. A performance comparison between two types of solid phase sorbents, the C18 sorbent of Supelclean ENVI-18 cartridge and the styrene-divinyl benzene copolymer sorbent of Sep-Pak PS2-Plus cartridge was conducted. The Sep-Pak PS2-Plus cartridges were found more suitable for extracting tricyclazole from water samples than the Supelclean ENVI-18 cartridges. For this cartridge, both methanol and ethyl acetate produced good results. The method was validated with good linearity and with a limit of detection of 0.008gL-1 for a 500-fold concentration through the SPE procedure. The recoveries of the method were stable at 80% and the precision was from 1.1-6.0% within the range of fortified concentrations. The validated method was also applied to measure the concentrations of tricyclazole in real paddy water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radiation chemistry and the grafting of a fluoropolymer, poly(tetrafluoroethylene-coperfluoropropyl vinyl ether) (PFA), was investigated with the aim of developing a highly stable grafted support for use in solid phase organic chemistry (SPOC). A radiation-induced grafting method was used whereby the PFA was exposed to ionizing radiation to form free radicals capable of initiating graft copolymerization of styrene. To fully investigate this process, both the radiation chemistry of PFA and the grafting of styrene to PFA were examined. Radiation alone was found to have a detrimental effect on PFA when irradiated at 303 K. This was evident from the loss in the mechanical properties due to chain scission reactions. This meant that when radiation was used for the grafting reactions, the total radiation dose needed to be kept as low as possible. The radicals produced when PFA was exposed to radiation were examined using electron spin resonance spectroscopy. Both main-chain (–CF2–C.F–CF2-) and end-chain (–CF2–C.F2) radicals were identified. The stability of the majority of the main-chain radicals when the polymer was heated above the glass transition temperature suggested that they were present mainly in the crystalline regions of the polymer, while the end-chain radicals were predominately located in the amorphous regions. The radical yield at 77 K was lower than the radical yield at 303 K suggesting that cage recombination at low temperatures inhibited free radicals from stabilizing. High-speed MAS 19F NMR was used to identify the non-volatile products after irradiation of PFA over a wide temperature range. The major products observed over the irradiation temperature 303 to 633 K included new saturated chain ends, short fluoromethyl side chains in both the amorphous and crystalline regions, and long branch points. The proportion of the radiolytic products shifted from mainly chain scission products at low irradiation temperatures to extensive branching at higher irradiation temperatures. Calculations of G values revealed that net crosslinking only occurred when PFA was irradiated in the melt. Minor products after irradiation at elevated temperatures included internal and terminal double bonds and CF3 groups adjacent to double bonds. The volatile products after irradiation at 303 K included tetrafluoromethane (CF4) and oxygen-containing species from loss of the perfluoropropyl ether side chains of PFA as identified by mass spectrometry and FTIR spectroscopy. The chemical changes induced by radiation exposure were accompanied by changes in the thermal properties of the polymer. Changes in the crystallinity and thermal stability of PFA after irradiation were examined using DSC and TGA techniques. The equilibrium melting temperature of untreated PFA was 599 K as determined using a method of extrapolation of the melting temperatures of imperfectly formed crystals. After low temperature irradiation, radiation- induced crystallization was prevalent due to scission of strained tie molecules, loss of perfluoropropyl ether side chains, and lowering of the molecular weight which promoted chain alignment and hence higher crystallinity. After irradiation at high temperatures, the presence of short and long branches hindered crystallization, lowering the overall crystallinity. The thermal stability of the PFA decreased with increasing radiation dose and temperature due to the introduction of defect groups. Styrene was graft copolymerized to PFA using -radiation as the initiation source with the aim of preparing a graft copolymer suitable as a support for SPOC. Various grafting conditions were studied, such as the total dose, dose rate, solvent effects and addition of nitroxides to create “living” graft chains. The effect of dose rate was examined when grafting styrene vapour to PFA using the simultaneous grafting method. The initial rate of grafting was found to be independent of the dose rate which implied that the reaction was diffusion controlled. When the styrene was dissolved in various solvents for the grafting reaction, the graft yield was strongly dependent of the type and concentration of the solvent used. The greatest graft yield was observed when the solvent swelled the grafted layers and the substrate. Microprobe Raman spectroscopy was used to map the penetration of the graft into the substrate. The grafted layer was found to contain both poly(styrene) (PS) and PFA and became thicker with increasing radiation dose and graft yield which showed that grafting began at the surface and progressively penetrated the substrate as the grafted layer was swollen. The molecular weight of the grafted PS was estimated by measuring the molecular weight of the non-covalently bonded homopolymer formed in the grafted layers using SEC. The molecular weight of the occluded homopolymer was an order of magnitude greater than the free homopolymer formed in the surrounding solution suggesting that the high viscosity in the grafted regions led to long PS grafts. When a nitroxide mediated free radical polymerization was used, grafting occurred within the substrate and not on the surface due to diffusion of styrene into the substrate at the high temperatures needed for the reaction to proceed. Loading tests were used to measure the capacity of the PS graft to be functionialized with aminomethyl groups then further derivatized. These loading tests showed that samples grafted in a solution of styrene and methanol had superior loading capacity over samples graft using other solvents due to the shallow penetration and hence better accessibility of the graft when methanol was used as a solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemically reversible solid−solid phase transformation of a TCNQ-modified glassy carbon, indium tin oxide, or metal electrode into Co\[TCNQ]2(H2O)2 material in the presence of Co2+(aq) containing electrolytes has been induced and monitored electrochemically. Voltammetric data reveal that the TCNQ/Co\[TCNQ]2(H2O)2 interconversion process is independent of electrode material and identity of cobalt electrolyte anion. However, a marked dependence on electrolyte concentration, scan rate, and method of electrode modification (drop casting or mechanical attachment) is found. Cyclic voltammetric and double potential step chronoamperometric measurements confirm that formation of Co\[TCNQ]2(H2O)2 occurs through a rate-determining nucleation and growth process that initially involves incorporation of Co2+(aq) ions into the reduced TCNQ crystal lattice at the TCNQ|electrode|electrolyte interface. Similarly, the reverse (oxidation) process, which involves transformation of solid Co\[TCNQ]2(H2O)2 back to parent TCNQ crystals, also is controlled by nucleation−growth kinetics. The overall chemically reversible process that represents this transformation is described by the reaction:  2TCNQ0(s) + 2e- + Co2+(aq) + 2H2O \[Co(TCNQ)2(H2O)2](s). Ex situ SEM images illustrated that this reversible TCNQ/Co\[TCNQ]2(H2O)2 conversion process is accompanied by drastic size and morphology changes in the parent solid TCNQ. In addition, different sizes of needle-shaped nanorod/nanowire crystals of Co\[TCNQ]2(H2O)2 are formed depending on the method of surface immobilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike the case with other divalent transition metal M\[TCNQ](2)(H(2)O)(2) (M = Fe, Co, Ni) analogues, the electrochemically induced solid-solid phase interconversion of TCNQ microcrystals (TCNQ = 7,7,8,8-tetracyanoquinodimethane) to Mn\[TCNQ](2)(H(2)O)(2) occurs via two voltammetrically distinct, time dependent processes that generate the coordination polymer in nanofiber or rod-like morphologies. Careful manipulation of the voltammetric scan rate, electrolysis time, Mn(2+)((aq)) concentration, and the method of electrode modification with solid TCNQ allows selective generation of either morphology. Detailed ex situ spectroscopic (IR, Raman), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) characterization clearly establish that differences in the electrochemically synthesized Mn-TCNQ material are confined to morphology. Generation of the nanofiber form is proposed to take place rapidly via formation and reduction of a Mn-stabilized anionic dimer intermediate, \[(Mn(2+))(TCNQ-TCNQ)(2)(*-)], formed as a result of radical-substrate coupling between TCNQ(*-) and neutral TCNQ, accompanied by ingress of Mn(2+) ions from the aqueous solution at the triple phase TCNQ/electrode/electrolyte boundary. In contrast, formation of the nanorod form is much slower and is postulated to arise from disproportionation of the \[(Mn(2+))(TCNQ-TCNQ)(*-)(2)] intermediate. Thus, identification of the time dependent pathways via the solid-solid state electrochemical approach allows the crystal size of the Mn\[TCNQ](2)(H(2)O)(2) material to be tuned and provides new mechanistic insights into the formation of different morphologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiple reaction monitoring mass spectrometric assay for the quantification of PYY in human plasma has been developed. A two stage sample preparation protocol was employed in which plasma containing the full length neuropeptide was first digested using trypsin, followed by solid-phase extraction to extract the digested peptide from the complex plasma matrix. The peptide extracts were analysed by LC-MS using multiple reaction monitoring to detect and quantify PYY. The method has been validated for plasma samples, yielding linear responses over the range 5–1,000 ng mL−1. The method is rapid, robust and specific for plasma PYY detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new dualscale modelling approach is presented for simulating the drying of a wet hygroscopic porous material that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of wood at low temperatures and is valid in the so-called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradients of moisture content and temperature on the microscopic field using suitably-defined periodic boundary conditions, which allows the macroscopic mass and thermal fluxes to be defined as averages of the microscopic fluxes over the unit cell. This novel formulation accounts for the intricate coupling of heat and mass transfer at the microscopic scale but reduces to a classical homogenisation approach if a linear relationship is assumed between the microscopic gradient and flux. Simulation results for a sample of spruce wood highlight the potential and flexibility of the new dual-scale approach. In particular, for a given unit cell configuration it is not necessary to propose the form of the macroscopic fluxes prior to the simulations because these are determined as a direct result of the dual-scale formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the timber industry, the ability to simulate the drying of wood is invaluable for manufacturing high quality wood products. Mathematically, however, modelling the drying of a wet porous material, such as wood, is a diffcult task due to its heterogeneous and anisotropic nature, and the complex geometry of the underlying pore structure. The well{ developed macroscopic modelling approach involves writing down classical conservation equations at a length scale where physical quantities (e.g., porosity) can be interpreted as averaged values over a small volume (typically containing hundreds or thousands of pores). This averaging procedure produces balance equations that resemble those of a continuum with the exception that effective coeffcients appear in their deffnitions. Exponential integrators are numerical schemes for initial value problems involving a system of ordinary differential equations. These methods differ from popular Newton{Krylov implicit methods (i.e., those based on the backward differentiation formulae (BDF)) in that they do not require the solution of a system of nonlinear equations at each time step but rather they require computation of matrix{vector products involving the exponential of the Jacobian matrix. Although originally appearing in the 1960s, exponential integrators have recently experienced a resurgence in interest due to a greater undertaking of research in Krylov subspace methods for matrix function approximation. One of the simplest examples of an exponential integrator is the exponential Euler method (EEM), which requires, at each time step, approximation of φ(A)b, where φ(z) = (ez - 1)/z, A E Rnxn and b E Rn. For drying in porous media, the most comprehensive macroscopic formulation is TransPore [Perre and Turner, Chem. Eng. J., 86: 117-131, 2002], which features three coupled, nonlinear partial differential equations. The focus of the first part of this thesis is the use of the exponential Euler method (EEM) for performing the time integration of the macroscopic set of equations featured in TransPore. In particular, a new variable{ stepsize algorithm for EEM is presented within a Krylov subspace framework, which allows control of the error during the integration process. The performance of the new algorithm highlights the great potential of exponential integrators not only for drying applications but across all disciplines of transport phenomena. For example, when applied to well{ known benchmark problems involving single{phase liquid ow in heterogeneous soils, the proposed algorithm requires half the number of function evaluations than that required for an equivalent (sophisticated) Newton{Krylov BDF implementation. Furthermore for all drying configurations tested, the new algorithm always produces, in less computational time, a solution of higher accuracy than the existing backward Euler module featured in TransPore. Some new results relating to Krylov subspace approximation of '(A)b are also developed in this thesis. Most notably, an alternative derivation of the approximation error estimate of Hochbruck, Lubich and Selhofer [SIAM J. Sci. Comput., 19(5): 1552{1574, 1998] is provided, which reveals why it performs well in the error control procedure. Two of the main drawbacks of the macroscopic approach outlined above include the effective coefficients must be supplied to the model, and it fails for some drying configurations, where typical dual{scale mechanisms occur. In the second part of this thesis, a new dual{scale approach for simulating wood drying is proposed that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of softwood at low temperatures and is valid in the so{called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradient on the microscopic field using suitably defined periodic boundary conditions, which allows the macroscopic ux to be defined as an average of the microscopic ux over the unit cell. This formulation provides a first step for moving from the macroscopic formulation featured in TransPore to a comprehensive dual{scale formulation capable of addressing any drying configuration. Simulation results reported for a sample of spruce highlight the potential and flexibility of the new dual{scale approach. In particular, for a given unit cell configuration it is not necessary to supply the effective coefficients prior to each simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this thesis investigates the mathematical modelling of charge transport in electrolyte solutions, within the nanoporous structures of electrochemical devices. We compare two approaches found in the literature, by developing onedimensional transport models based on the Nernst-Planck and Maxwell-Stefan equations. The development of the Nernst-Planck equations relies on the assumption that the solution is infinitely dilute. However, this is typically not the case for the electrolyte solutions found within electrochemical devices. Furthermore, ionic concentrations much higher than those of the bulk concentrations can be obtained near the electrode/electrolyte interfaces due to the development of an electric double layer. Hence, multicomponent interactions which are neglected by the Nernst-Planck equations may become important. The Maxwell-Stefan equations account for these multicomponent interactions, and thus they should provide a more accurate representation of transport in electrolyte solutions. To allow for the effects of the electric double layer in both the Nernst-Planck and Maxwell-Stefan equations, we do not assume local electroneutrality in the solution. Instead, we model the electrostatic potential as a continuously varying function, by way of Poisson’s equation. Importantly, we show that for a ternary electrolyte solution at high interfacial concentrations, the Maxwell-Stefan equations predict behaviour that is not recovered from the Nernst-Planck equations. The main difficulty in the application of the Maxwell-Stefan equations to charge transport in electrolyte solutions is knowledge of the transport parameters. In this work, we apply molecular dynamics simulations to obtain the required diffusivities, and thus we are able to incorporate microscopic behaviour into a continuum scale model. This is important due to the small size scales we are concerned with, as we are still able to retain the computational efficiency of continuum modelling. This approach provides an avenue by which the microscopic behaviour may ultimately be incorporated into a full device-scale model. The one-dimensional Maxwell-Stefan model is extended to two dimensions, representing an important first step for developing a fully-coupled interfacial charge transport model for electrochemical devices. It allows us to begin investigation into ambipolar diffusion effects, where the motion of the ions in the electrolyte is affected by the transport of electrons in the electrode. As we do not consider modelling in the solid phase in this work, this is simulated by applying a time-varying potential to one interface of our two-dimensional computational domain, thus allowing a flow field to develop in the electrolyte. Our model facilitates the observation of the transport of ions near the electrode/electrolyte interface. For the simulations considered in this work, we show that while there is some motion in the direction parallel to the interface, the interfacial coupling is not sufficient for the ions in solution to be "dragged" along the interface for long distances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for the rapid and simultaneous determination of 6,7-dimethylesculetin (CAS 120-08-1) and geniposide (CAS 24512-63-8) in rat plasma has been developed, using validated high performance liquid chromatography (HPLC) with solid phase extraction (SPE). The HPLC analysis was performed on a commercially available column (200 mm x 4.6 mm, 5 microm) with acetonitrile-methanol-0.1% aqueous formic acid as mobile phase and the UV detection at 343 nm and 238 nm for 6,7-dimethylesculetin and geniposide, respectively. The calibration curves for 6,7-dimethylesculetin and geniposide were linear over the range 0.4-25.6 microg/mL and 1.12-71.68 microg/mL, respectively. The lower limits of quantitation were 0.40 microg/ mL and 1.12 microg/mL, and the lower limits of detection were 0.06 microg/mL and 0.09 microg/ mL, respectively. The intra-day and inter-day precision for 6,7-dimethylesculetin and geniposide were < 5%, whereas the absolute recovery percentages were > 74%. A successful application of the developed HPLC analysis was demonstrated for the pharmacokinetic study of a Traditional Chinese Medicine formula of Yin Chen Hao Tang preparation.