484 resultados para science learning
em Queensland University of Technology - ePrints Archive
Student autonomy enhancing science learning : Observations from a Primary Connections implementation
Resumo:
This case study involved a detailed analysis of the changes in beliefs and teaching practices of teachers who adopted the Primary Connections program as a professional development initiative. When implementing an inquiry-based learning model, teachers observed that their students learnt more when they intervened less. By scaffolding open-ended nquiries they achieved more diverse, complex and thorough learning outcomes than previously achieved with teacher-led discussions or demonstrations. Initially, student autonomy presented erceived threats to teachers, including possible selection of topics outside the teachers’ science knowledge. In practice, when such issues arose, resolving them became a stimulating part of the earning for both teachers and students. The teachers’ observation of enhanced student learning became a powerful motivator for change in their beliefs and practices. Implications for developers of PD programs are (1) the importance of modeling student-devised inquiries, and (2) recognising the role of successful classroom implementation in facilitating change.
Resumo:
The establishment and continuity of two international comparative assessments of science learning—the IEA’s TIMSS project and the OECD’s PISA project—have meant that there are now high-status reference points for other national and more local approaches to assessing the efficacy of science teaching and learning. Both projects, albeit with very different senses of what the outcome of science learning should be, have contributed positively and negatively to the current state of assessment of school science. The TIMSS project looks back at the science that is commonly included in the curricula of the participating countries. It is thus not about established school science nor about innovations in it. PISA is highly innovative looking, prospectively forward to see how students can use their science learning in everyday life situations. In this chapter some of these positives and negatives are discussed.
Resumo:
In order to develop scientific literacy students need the cognitive tools that enable them to read and evaluate science texts. One cognitive tool that has been widely used in science education to aid the development of conceptual understanding is concept mapping. However, it has been found some students experience difficulty with concept map construction. This study reports on the development and evaluation of an instructional sequence that was used to scaffold the concept-mapping process when middle school students who were experiencing difficulty with science learning used concept mapping to summarise a chapter of a science text. In this study individual differences in working memory functioning are suggested as one reason that students experience difficulty with concept map construction. The study was conducted using a design-based research methodology in the school’s learning support centre. The analysis of student work samples collected during the two-year study identified some of the difficulties and benefits associated with the use of scaffolded concept mapping with these students. The observations made during this study highlight the difficulty that some students experience with the use of concept mapping as a means of developing an understanding of science concepts and the amount of instructional support that is required for such understanding to develop. Specifically, the findings of the study support the use of multi-component, multi-modal instructional techniques to facilitate the development of conceptual understanding with students who experience difficulty with science learning. In addition, the important roles of interactive dialogue and metacognition in the development of conceptual understanding are identified.
Resumo:
Innovations are usually attributed to ideas generated in the minds of individuals. As we reflect upon the evolving design of an online project to engage students in learning science through hybridized writing activities we propose a more distributed view of the process of innovative design. That is, our experience suggests ideas are generated in the activity of interacting with human and material resources that expand and constrain possibilities. This project is innovative in that it is a new educational response to the problem of disengagement of students in science, and has proven to be effective in changing classroom practice and improving students’ scientific literacy. In this chapter, we identify the antecedents and trace the evolution of the project. This account illuminates the innovative design process, presents a summary of the evidence for the effectiveness of the project, and identifies future directions for further development and research. Keywords: Science learning, hybridized writing, case study, innovative approach
Resumo:
Many primary teachers and preservice teachers experience a fear of science that translates into a fear of teaching science. Consequently, primary students may not receive a full science education curriculum, particularly as the teaching of science is avoided by many primary teachers, as shown in an Australian report by Goodrum, Hackling and Rennie ( 2001 ). Preservice teachers need to develop confi dence to teach primary science, by understanding what science is, knowing how to plan and assess science learning, and teaching science skills and knowledge in ways that engage students in science education.
Resumo:
Research over a long period of time has continued to demonstrate problems in the teaching of science in school. In addition, declining levels of participation and interest in science and related fields have been reported from many particularly western countries. Among the strategies suggested is the recruitment of professional scientists and technologists either at the graduate level or advanced career level to change career and teach. In this study, we analysed how one beginning middle primary teacher engaged with students to support their science learning by establishing rich classroom discussions. We followed his evolving teaching expertise over three years focussing on his communicative practices informed by socio-cultural theory. His practices exemplified a non-interactive dialogical communicative approach where ideas were readily discussed but were concentrated on the class acquiring acceptable scientific understandings. His focus on the language of science was a significant aspect of his practice and one that emerged from his professional background. The study affirms the theoretical frameworks proposed by Mortimer and Scott (2003) highlighting how dialogue contributes to heightened student interest in science.
Resumo:
Efforts to improve mathematics and science content knowledge have in many institutions required redefining teacher education through new teaching and learning. See, for example, Peard & Pumadevi (2007) for an account of one such attempt involving the development of a Foundations Unit, Scientific and Quantitative Literacy. This unit is core for all first year pre-service primary teacher education students at Queensland University of Technology (QUT) and two Education Institutes in Malaysia, Institute Perguruan Raja Melewar (IPRM), and Institute Perguruan Teknik (IPT) Kuala Lumpur. Since then, QUT has modified the unit to adopt a thematic approach to the same content. An aim of the unit rewrite was the development of a positive attitude and disposition to the teaching and learning of mathematics and science, with a curiosity and willingness to speculate about and explore the world. Numeracy was specifically identified within the mathematics encountered and appropriately embedded in the science learning area. The importance of the ability to engage in communication of and about mathematics and science was considered crucial to the development of pre-service primary teachers. Cognisance was given to the appropriate selection and use of technology to enhance learning - digital technologies were embedded in the teaching, learning and assessment of the unit to avoid being considered as an optional extra. This was achieved around the theme of “the sustainable school”. This „sustainability‟ theme was selected due to its prominence in Australia‟s futures-oriented National Curriculum which will be implemented in 2011. This paper outlines the approach taken to the implementation of the unit and discusses early indicators of its effectiveness.
Resumo:
Efforts to improve mathematics and science content knowledge have in many institutions required redefining teacher education through new teaching and learning. See, for example, Peard & Pumadevi (2007) for an account of one such attempt involving the development of a Foundations Unit, Scientific and Quantitative Literacy. This unit is core for all first year pre-service primary teacher education students at Queensland University of Technology (QUT) and two Education Institutes in Malaysia, Institute Perguruan Raja Melewar (IPRM), and Institute Perguruan Teknik (IPT) Kuala Lumpur. Since then, QUT has modified the unit to adopt a thematic approach to the same content. An aim of the unit rewrite was the development of a positive attitude and disposition to the teaching and learning of mathematics and science, with a curiosity and willingness to speculate about and explore the world. Numeracy was specifically identified within the mathematics encountered and appropriately embedded in the science learning area. The importance of the ability to engage in communication of and about mathematics and science was considered crucial to the development of pre-service primary teachers. Cognisance was given to the appropriate selection and use of technology to enhance learning - digital technologies were embedded in the teaching, learning and assessment of the unit to avoid being considered as an optional extra. This was achieved around the theme of “the sustainable school”. This ‘sustainability’ theme was selected due to its prominence in Australia’s futures-oriented National Curriculum which will be implemented in 2011. This paper outlines the approach taken to the implementation of the unit and discusses early indicators of its effectiveness.
Coordination of empirical laws and explanatory theory using model-based reasoning in Year 10 science
Resumo:
The critical factor in determining students' interest and motivation to learn science is the quality of the teaching. However, science typically receives very little time in primary classrooms, with teachers often lacking the confidence to engage in inquiry-based learning because they do not have a sound understanding of science or its associated pedagogical approaches. Developing teacher knowledge in this area is a major challenge. Addressing these concerns with didactic "stand and deliver" modes of Professional Development (PD) has been shown to have little relevance or effectiveness, yet is still the predominant approach used by schools and education authorities. In response to that issue, the constructivist-inspired Primary Connections professional learning program applies contemporary theory relating to the characteristics of effective primary science teaching, the changes required for teachers to use those pedagogies, and professional learning strategies that facilitate such change. This study investigated the nature of teachers' engagement with the various elements of the program. Summative assessments of such PD programs have been undertaken previously, however there was an identified need for a detailed view of the changes in teachers' beliefs and practices during the intervention. This research was a case study of a Primary Connections implementation. PD workshops were presented to a primary school staff, then two teachers were observed as they worked in tandem to implement related curriculum units with their Year 4/5 classes over a six-month period. Data including interviews, classroom observations and written artefacts were analysed to identify common themes and develop a set of assertions related to how teachers changed their beliefs and practices for teaching science. When teachers implement Primary Connections, their students "are more frequently curious in science and more frequently learn interesting things in science" (Hackling & Prain, 2008). This study has found that teachers who observe such changes in their students consequently change their beliefs and practices about teaching science. They enhance science learning by promoting student autonomy through open-ended inquiries, and they and their students enhance their scientific literacy by jointly constructing investigations and explaining their findings. The findings have implications for teachers and for designers of PD programs. Assertions related to teaching science within a pedagogical framework consistent with the Primary Connections model are that: (1) promoting student autonomy enhances science learning; (2) student autonomy presents perceived threats to teachers but these are counteracted by enhanced student engagement and learning; (3) the structured constructivism of Primary Connections resources provides appropriate scaffolding for teachers and students to transition from didactic to inquiry-based learning modes; and (4) authentic science investigations promote understanding of scientific literacy and the "nature of science". The key messages for designers of PD programs are that: (1) effective programs model the pedagogies being promoted; (2) teachers benefit from taking the role of student and engaging in the proposed learning experiences; (3) related curriculum resources foster long-term engagement with new concepts and strategies; (4) change in beliefs and practices occurs after teachers implement the program or strategy and see positive outcomes in their students; and (5) implementing this study's PD model is efficient in terms of resources. Identified topics for further investigation relate to the role of assessment in providing evidence to support change in teachers' beliefs and practices, and of teacher reflection in making such change more sustainable.
Resumo:
In this paper we present an account of children's interactions with a mobile technology prototype within a school context. The Noise Detectives trial was conducted in a school setting with the aim of better understanding the role of mobile technology as a mediator within science learning activities. Over eighty children, aged between ten and twelve, completed an outdoor data gathering activity using a mobile learning prototype that included paper and digital components. They measured and recorded noise levels at a range of locations throughout the schools. We analyzed the activity to determine how the components of the prototype were integrated into the learning activity, and to identify differences in behavior that resulted from using these components. We present design implications that resulted from observed differences in prototype use and appropriation.
Resumo:
Concerns raised in educational reports about school science in terms of students. outcomes and attitudes, as well as science teaching practices prompted investigation into science learning and teaching practices at the foundational level of school science. Without science content and process knowledge, understanding issues of modern society and active participation in decision-making is difficult. This study contended that a focus on the development of the language of science could enable learners to engage more effectively in learning science and enhance their interest and attitudes towards science. Furthermore, it argued that explicit teaching practices where science language is modelled and scaffolded would facilitate the learning of science by young children at the beginning of their formal schooling. This study aimed to investigate science language development at the foundational level of school science learning in the preparatory-school with students aged five and six years. It focussed on the language of science and science teaching practices in early childhood. In particular, the study focussed on the capacity for young students to engage with and understand science language. Previous research suggests that students have difficulty with the language of science most likely because of the complexities and ambiguities of science language. Furthermore, literature indicates that tensions transpire between traditional science teaching practices and accepted early childhood teaching practices. This contention prompted investigation into means and models of pedagogy for learning foundational science language, knowledge and processes in early childhood. This study was positioned within qualitative assumptions of research and reported via descriptive case study. It was located in a preparatory-school classroom with the class teacher, teacher-aide, and nineteen students aged four and five years who participated with the researcher in the study. Basil Bernstein.s pedagogical theory coupled with Halliday.s Systemic Functional Linguistics (SFL) framed an examination of science pedagogical practices for early childhood science learning. Students. science learning outcomes were gauged by focussing a Hallydayan lens on their oral and reflective language during 12 science-focussed episodes of teaching. Data were collected throughout the 12 episodes. Data included video and audio-taped science activities, student artefacts, journal and anecdotal records, semi-structured interviews and photographs. Data were analysed according to Bernstein.s visible and invisible pedagogies and performance and competence models. Additionally, Halliday.s SFL provided the resource to examine teacher and student language to determine teacher/student interpersonal relationships as well as specialised science and everyday language used in teacher and student science talk. Their analysis established the socio-linguistic characteristics that promoted science competencies in young children. An analysis of the data identified those teaching practices that facilitate young children.s acquisition of science meanings. Positive indications for modelling science language and science text types to young children have emerged. Teaching within the studied setting diverged from perceived notions of common early childhood practices and the benefits of dynamic shifting pedagogies were validated. Significantly, young students demonstrated use of particular specialised components of school-science language in terms of science language features and vocabulary. As well, their use of language demonstrated the students. knowledge of science concepts, processes and text types. The young students made sense of science phenomena through their incorporation of a variety of science language and text-types in explanations during both teacher-directed and independent situations. The study informs early childhood science practices as well as practices for foundational school science teaching and learning. It has exposed implications for science education policy, curriculum and practices. It supports other findings in relation to the capabilities of young students. The study contributes to Systemic Functional Linguistic theory through the development of a specific resource to determine the technicality of teacher language used in teaching young students. Furthermore, the study contributes to methodology practices relating to Bernsteinian theoretical perspectives and has demonstrated new ways of depicting and reporting teaching practices. It provides an analytical tool which couples Bernsteinian and Hallidayan theoretical perspectives. Ultimately, it defines directions for further research in terms of foundation science language learning, ongoing learning of the language of science and learning science, science teaching and learning practices, specifically in foundational school science, and relationships between home and school science language experiences.
Resumo:
Egon Brunswik proposed the concept of “representative design” for psychological experimentation, which has historically been overlooked or confused with another of Brunswik’s terms, ecological validity. In this article, we reiterate the distinction between these two important concepts and highlight the relevance of the term representative design for sports psychology, practice, and experimental design. We draw links with ideas on learning design in the constraints-led approach to motor learning and nonlinear pedagogy. We propose the adoption of a new term, representative learning design, to help sport scientists, experimental psychologists, and pedagogues recognize the potential application of Brunswik’s original concepts, and to ensure functionality and action fidelity in training and learning environments.
Resumo:
Since 2000 there has been pressure on education systems for develop in students a number of competences that are described as generic. This pressure stems from studies of the changing nature of work in the Knowledge Society that is now so dominant. The DeSeCo project identified a number of these competences, and listed them under the headings of communicative, analytical and personal. They include thinking, creativity, communication skills, knowing how to learn, working in teams, adapting to change, and problem solving. These competences pose a substantial challenge to the manner in which education as a whole, and science education in particular, has hitherto been generally conceived. It is now common to find their importance acknowledged in new formulation of the curriculum. The paper reviews a number of these curriculum documents and how they have tried to relate these competences to the teaching and learning of Science, a subject with its own very specific content for learning. It will be suggested that the challenge provides an opportunity for a reconstruction of the teaching and learning of science in schools that will increase its effectiveness for more students.