138 resultados para robust transitivity
em Queensland University of Technology - ePrints Archive
Resumo:
We address robust stabilization problem for networked control systems with nonlinear uncertainties and packet losses by modelling such systems as a class of uncertain switched systems. Based on theories on switched Lyapunov functions, we derive the robustly stabilizing conditions for state feedback stabilization and design packet-loss dependent controllers by solving some matrix inequalities. A numerical example and some simulations are worked out to demonstrate the effectiveness of the proposed design method.
Resumo:
This paper proposes a new approach for delay-dependent robust H-infinity stability analysis and control synthesis of uncertain systems with time-varying delay. The key features of the approach include the introduction of a new Lyapunov–Krasovskii functional, the construction of an augmented matrix with uncorrelated terms, and the employment of a tighter bounding technique. As a result, significant performance improvement is achieved in system analysis and synthesis without using either free weighting matrices or model transformation. Examples are given to demonstrate the effectiveness of the proposed approach.
Resumo:
Insufficient availability of osteogenic cells limits bone regeneration through cell-based therapies. This study investigated the potential of amniotic fluid–derived stem (AFS) cells to synthesize mineralized extracellular matrix within porous medical-grade poly-e-caprolactone (mPCL) scaffolds. The AFS cells were initially differentiated in two-dimensional (2D) culture to determine appropriate osteogenic culture conditions and verify physiologic mineral production by the AFS cells. The AFS cells were then cultured on 3D mPCL scaffolds (6-mm diameter9-mm height) and analyzed for their ability to differentiate to osteoblastic cells in this environment. The amount and distribution of mineralized matrix production was quantified throughout the mPCL scaffold using nondestructive micro computed tomography (microCT) analysis and confirmed through biochemical assays. Sterile microCT scanning provided longitudinal analysis of long-term cultured mPCL constructs to determine the rate and distribution of mineral matrix within the scaffolds. The AFS cells deposited mineralized matrix throughout the mPCL scaffolds and remained viable after 15 weeks of 3D culture. The effect of predifferentiation of the AFS cells on the subsequent bone formation in vivo was determined in a rat subcutaneous model. Cells that were pre-differentiated for 28 days in vitro produced seven times more mineralized matrix when implanted subcutaneously in vivo. This study demonstrated the potential of AFS cells to produce 3D mineralized bioengineered constructs in vitro and in vivo and suggests that AFS cells may be an effective cell source for functional repair of large bone defects
Resumo:
In this study, the authors propose a novel video stabilisation algorithm for mobile platforms with moving objects in the scene. The quality of videos obtained from mobile platforms, such as unmanned airborne vehicles, suffers from jitter caused by several factors. In order to remove this undesired jitter, the accurate estimation of global motion is essential. However it is difficult to estimate global motions accurately from mobile platforms due to increased estimation errors and noises. Additionally, large moving objects in the video scenes contribute to the estimation errors. Currently, only very few motion estimation algorithms have been developed for video scenes collected from mobile platforms, and this paper shows that these algorithms fail when there are large moving objects in the scene. In this study, a theoretical proof is provided which demonstrates that the use of delta optical flow can improve the robustness of video stabilisation in the presence of large moving objects in the scene. The authors also propose to use sorted arrays of local motions and the selection of feature points to separate outliers from inliers. The proposed algorithm is tested over six video sequences, collected from one fixed platform, four mobile platforms and one synthetic video, of which three contain large moving objects. Experiments show our proposed algorithm performs well to all these video sequences.
Resumo:
The ICU is an integral part of any hospital and is under great load from patient arrivals as well as resource limitations. Scheduling of patients in the ICU is complicated by the two general types; elective surgery and emergency arrivals. This complicated situation is handled by creating a tentative initial schedule and then reacting to uncertain arrivals as they occur. For most hospitals there is little or no flexibility in the number of beds that are available for use now or in the future. We propose an integer programming model to handle a parallel machine reacting system for scheduled and unscheduled arrivals.